国产一区久久精品_性xxxxx_国产精品久久久久无码av_免费观看视频www

好多范文網 haoduofanwen.com,好用的范文大全!

2023等差數列教案

網友投稿 分享 時間: 加入收藏 我要投稿 點贊

2023等差數列教案【精選5篇】

作為一名老師,就難以避免地要準備教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當的教學方法。下面是小編為大家整理的等差數列教案,如果大家喜歡可以分享給身邊的朋友。

2023等差數列教案

2023等差數列教案【篇1】

教學目的:

1.明確等差數列的定義,掌握等差數列的通項公式。

2.會解決知道中的三個,求另外一個的問題。

教學重點:等差數列的概念,等差數列的通項公式。

教學難點:等差數列的性質

教學過程:

一、復習引入:(課件第一頁)

二、講解新課:

1.等差數列:一般地,如果一個數列從第二項起,每一項與它前一項的 差等于同一個常數,這個數列就叫做等差數列,這個常數就叫做等差數列的公差(常用字母“d”表示)。

(課件第二頁)

⑴.公差d一定是由后項減前項所得,而不能用前項減后項來求;

⑵.對于數列{ },若 - =d (與n無關的數或字母),n≥2,n∈n ,則此數列是等差數列,d 為公差。

2.等差數列的通項公式: 【或 】等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列 的首項是 ,公差是d,則據其定義可得: 即: 即: 即: …… 由此歸納等差數列的通項公式可得: (課件第二頁) 第二通項公式 (課件第二頁)

三、例題講解

例1 ⑴求等差數列8,5,2…的第20項(課本p111) ⑵ -401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?

例2 在等差數列 中,已知 , ,求 , ,

例3將一個等差數列的通項公式輸入計算器數列 中,設數列的第s項和第t項分別為 和 ,計算 的值,你能發現什么結論?并證明你的結論。

小結:①這就是第二通項公式的變形,②幾何特征,直線的斜率

例4 梯子最高一級寬33cm,最低一級寬為110cm,中間還有10級,各級的寬度成等差數列,計算中間各級的寬度。(課本p112例3)

例5 已知數列{ }的通項公式 ,其中 、 是常數,那么這個數列是否一定是等差數列?若是,首項與公差分別是什么?(課本p113例4)

分析:由等差數列的定義,要判定 是不是等差數列,只要看 (n≥2)是不是一個與n無關的常數。

注:①若p=0,則{ }是公差為0的等差數列,即為常數列q,q,q,… ②若p≠0, 則{ }是關于n的一次式,從圖象上看,表示數列的各點均在一次函數y=px+q的圖象上,一次項的系數是公差,直線在y軸上的截距為q. ③數列{ }為等差數列的充要條件是其通項 =pn+q (p、q是常數)。稱其為第3通項公式④判斷數列是否是等差數列的方法是否滿足3個通項公式中的一個。

例6.成等差數列的四個數的和為26,第二項與第三項之積為40,求這四個數.

四、練習:

1.(1)求等差數列3,7,11,……的第4項與第10項.

(2)求等差數列10,8,6,……的第20項.

(3)100是不是等差數列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由.

(4)-20是不是等差數列0,-3 ,-7,……的項?如果是,是第幾項?如果不是,說明理由.

2.在等差數列{ }中,

(1)已知 =10, =19,求 與d;

五、課后作業:

習題3.2 1(2),(4) 2.(2), 3, 4, 5, 6 . 8. 9.

2023等差數列教案【篇2】

教學目標:

1.知識與技能目標:理解等差數列的概念,了解等差數列的通項公式的推導過程及思想,掌握并會用等差數列的通項公式,初步引入“數學建模”的思想方法并能運用。

2.過程與方法目標:培養學生觀察分析、猜想歸納、應用公式的能力;在領會函數與數列關系的前提下,滲透函數、方程的思想。

3.情感態度與價值觀目標:通過對等差數列的研究培養學生主動探索、勇于發現的求知的精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

教學重點:

等差數列的概念及通項公式。

教學難點:

(1)理解等差數列“等差”的特點及通項公式的含義。

(2)等差數列的通項公式的推導過程及應用。

教具:多媒體、實物投影儀

教學過程:

一、復習引入:

1.回憶上一節課學習數列的定義,請舉出一個具體的例子。表示數列有哪幾種方法——列舉法、通項公式、遞推公式。我們這節課接著學習一類特殊的數列——等差數列。

2.由生活中具體的數列實例引入

(1).國際奧運會早期,撐桿跳高的記錄近似的由下表給出:

你能看出這4次撐桿條跳世界記錄組成的數列,它的各項之間有什么關系嗎?

(2)某劇場前10排的座位數分別是:

48、46、44、42、40、38、36、34、32、30

引導學生觀察:數列①、②有何規律?

引導學生發現這些數字相鄰兩個數字的差總是一個常數,數列①先左到右相差0.2,數列②從左到右相差-2。

二.新課探究,推導公式

1.等差數列的概念

如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,這個常數叫做等差數列的公差,通常用字母d來表示。

強調以下幾點:

① “從第二項起”滿足條件;

②公差d一定是由后項減前項所得;

③每一項與它的前一項的差必須是同一個常數(強調“同一個常數” );

所以上面的2、3都是等差數列,他們的公差分別為0.20,-2。

在學生對等差數列有了直觀認識的基礎上,我將給出練習題,以鞏固知識的學習。

[練習一]判斷下列各組數列中哪些是等差數列,哪些不是?如果是,寫出首項a1和公差d,如果不是,說明理由。

1.3,5,7,…… √ d=2

2.9,6,3,0,-3,…… √ d=-3

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

在這個過程中我將采用邊引導邊提問的方法,以充分調動學生學習的積極性。

2.等差數列通項公式

如果等差數列{an}首項是a1,公差是d,那么根據等差數列的定義可得:

a2 - a1 =d即:a2 =a1 +d

a3 – a2 =d即:a3 =a2 +d = a1 +2d

a4 – a3 =d即:a4 =a3 +d = a1 +3d

……

猜想: a40 = a1 +39d

進而歸納出等差數列的通項公式:an=a1+(n-1)d

此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法:

n=a1+(n-1)d

a2-a1=d

a3-a2=d

a4-a3 =d

……

an –a(n-1) =d

將這(n-1)個等式左右兩邊分別相加,就可以得到

an-a1=(n-1)d

即an=a1+(n-1)d (Ⅰ)

當n=1時,(Ⅰ)也成立,所以對一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數列{an}的通項公式。

三.應用舉例

例1求等差數列,12,8,4,0,…的第10項;20項;第30項;

例2 -401是不是等差數列-5,-9,-13,…的項?如果是,是第幾項?

四.反饋練習

1.P293練習A組第1題和第2題(要求學生在規定時間內做完上述題目,教師提問)。目的:使學生熟悉通項公式對學生進行基本技能訓練。

五.歸納小結提煉精華

(由學生總結這節課的收獲)

1.等差數列的概念及數學表達式.

強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數

2.等差數列的通項公式an= a1+(n-1) d會知三求一

六.課后作業運用鞏固

必做題:課本P284習題A組第3,4,5題

2023等差數列教案【篇3】

一、知識與技能

1.了解公差的概念,明確一個數列是等差數列的限定條件,能根據定義判斷一個數列是等差數列;

2.正確認識使用等差數列的各種表示法,能靈活運用通項公式求等差數列的首項、公差、項數、指定的項.

二、過程與方法

1.通過對等差數列通項公式的推導培養學生:的觀察力及歸納推理能力;

2.通過等差數列變形公式的教學培養學生:思維的深刻性和靈活性.

三、情感態度與價值觀

通過等差數列概念的歸納概括,培養學生:的觀察、分析資料的能力,積極思維,追求新知的創新意識.

教學過程

導入新課

師:上兩節課我們學習了數列的定義以及給出數列和表示數列的幾種方法——列舉法、通項公式、遞推公式、圖象法.這些方法從不同的角度反映數列的特點.下面我們看這樣一些數列的例子:(課本P41頁的4個例子)

(1)0,5,10,15,20,25,…;

(2)48,53,58,63,…;

(3)18,15.5,13,10.5,8,5.5…;

(4)10 072,10 144,10 216,10 288,10 366,….

請你們來寫出上述四個數列的第7項.

生:第一個數列的第7項為30,第二個數列的第7項為78,第三個數列的第7項為3,第四個數列的第7項為10 510.

師:我來問一下,你依據什么寫出了這四個數列的第7項呢?以第二個數列為例來說一說.

生:這是由第二個數列的后一項總比前一項多5,依據這個規律性我得到了這個數列的第7項為78.

師:說得很有道理!我再請同學們仔細觀察一下,看看以上四個數列有什么共同特征?我說的是共同特征.

生:1每相鄰兩項的差相等,都等于同一個常數.

師:作差是否有順序,誰與誰相減?

生:1作差的順序是后項減前項,不能顛倒.

師:以上四個數列的共同特征:從第二項起,每一項與它前面一項的差等于同一個常數(即等差);我們給具有這種特征的數列起一個名字叫——等差數列.

這就是我們這節課要研究的內容.

推進新課

等差數列的定義:一般地,如果一個數列從第二項起,每一項與它前一項的差等于同一個常數,這個數列就叫做等差數列,這個常數就叫做等差數列的公差(常用字母“d”表示).

(1)公差d一定是由后項減前項所得,而不能用前項減后項來求;

(2)對于數列{an},若an-a n-1=d(與n無關的數或字母),n≥2,n∈N__,則此數列是等差數列,d叫做公差.

師:定義中的關鍵字是什么?(學生:在學習中經常遇到一些概念,能否抓住定義中的關鍵字,是能否正確地、深入的理解和掌握概念的重要條件,更是學好數學及其他學科的重要一環.因此教師:應該教會學生:如何深入理解一個概念,以培養學生:分析問題、認識問題的能力)

生:從“第二項起”和“同一個常數”.

師::很好!

師:請同學們思考:數列(1)、(2)、(3)、(4)的通項公式存在嗎?如果存在,分別是什么?

生:數列(1)通項公式為5n-5,數列(2)通項公式為5n+43,數列(3)通項公式為2.5n-15.5,….

師:好,這位同學用上節課學到的知識求出了這幾個數列的通項公式,實質上這幾個通項公式有共同的特點,無論是在求解方法上,還是在所求的結果方面都存在許多共性,下面我們來共同思考.

[合作探究]

等差數列的通項公式

師:等差數列定義是由一數列相鄰兩項之間關系而得到的,若一個等差數列{an}的首項是a1,公差是d,則據其定義可得什么?

生:a2-a1=d,即a2=a1+d.

師:對,繼續說下去!

生:a3-a2=d,即a3=a2+d=a1+2d;

a4-a3=d,即a4=a3+d=a1+3d;

……

師:好!規律性的東西讓你找出來了,你能由此歸納出等差數列的通項公式嗎?

生:由上述各式可以歸納出等差數列的通項公式是an=a1+(n-1)d.

師:很好!這樣說來,若已知一數列為等差數列,則只要知其首項a1和公差d,便可求得其通項an了.需要說明的是:此公式只是等差數列通項公式的猜想,你能證明它嗎?

生:前面已學過一種方法叫迭加法,我認為可以用.證明過程是這樣的:

因為a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.將它們相加便可以得到:an=a1+(n-1)d.

師:太好了!真是活學活用啊!這樣一來我們通過證明就可以放心使用這個通項公式了.

[教師:精講]

由上述關系還可得:am=a1+(m-1)d,

即a1=am-(m-1)d.

則an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

即等差數列的第二通項公式an=am+(n-m)d.(這是變通的通項公式)

由此我們還可以得到.

[例題剖析]

【例1】(1)求等差數列8,5,2,…的第20項;

(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?

師:這個等差數列的首項和公差分別是什么?你能求出它的第20項嗎?

生:1這題太簡單了!首項和公差分別是a1=8,d=5-8=2-5=-3.又因為n=20,所以由等差數列的通項公式,得a20=8+(20-1)×(-3)=-49.

師:好!下面我們來看看第(2)小題怎么做.

生:2由a1=-5,d=-9-(-5)=-4得數列通項公式為an=-5-4(n-1).

由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是這個數列的第100項.

師:剛才兩個同學將問題解決得很好,我們做本例的目的是為了熟悉公式,實質上通項公式就是an,a1,d,n組成的方程(獨立的量有三個).

說明:(1)強調當數列{an}的項數n已知時,下標應是確切的數字;(2)實際上是求一個方程的.正整數解的問題.這類問題學生:以前見得較少,可向學生:著重點出本問題的實質:要判斷-401是不是數列的項,關鍵是求出數列的通項公式an,判斷是否存在正整數n,使得an=-401成立.

【例2】已知數列{an}的通項公式an=pn+q,其中p、q是常數,那么這個數列是否一定是等差數列?若是,首項與公差分別是什么?

例題分析:

師:由等差數列的定義,要判定{an}是不是等差數列,只要根據什么?

生:只要看差an-an-1(n≥2)是不是一個與n無關的常數.

師:說得對,請你來求解.

生:當n≥2時,〔取數列{an}中的任意相鄰兩項an-1與an(n≥2)〕

an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p為常數,

所以我們說{an}是等差數列,首項a1=p+q,公差為p.

師:這里要重點說明的是:

(1)若p=0,則{an}是公差為0的等差數列,即為常數列q,q,q,….

(2)若p≠0,則an是關于n的一次式,從圖象上看,表示數列的各點(n,an)均在一次函數y=px+q的圖象上,一次項的系數是公差p,直線在y軸上的截距為q.

(3)數列{an}為等差數列的充要條件是其通項an=pn+q(p、q是常數),稱其為第3通項公式.課堂練習

(1)求等差數列3,7,11,…的第4項與第10項.

分析:根據所給數列的前3項求得首項和公差,寫出該數列的通項公式,從而求出所┣笙.

解:根據題意可知a1=3,d=7-3=4.∴該數列的通項公式為an=3+(n-1)×4,即an=4n-1(n≥1,n∈N__).∴a4=4×4-1=15,a 10=4×10-1=39.

評述:關鍵是求出通項公式.

(2)求等差數列10,8,6,…的第20項.

解:根據題意可知a1=10,d=8-10=-2.

所以該數列的通項公式為an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.

評述:要求學生:注意解題步驟的規范性與準確性.

(3)100是不是等差數列2,9,16,…的項?如果是,是第幾項?如果不是,請說明理由.

分析:要想判斷一個數是否為某一個數列的其中一項,其關鍵是要看是否存在一個正整數n值,使得an等于這個數.

解:根據題意可得a1=2,d=9-2=7.因而此數列通項公式為an=2+(n-1)×7=7n-5.

令7n-5=100,解得n=15.所以100是這個數列的第15項.

(4)-20是不是等差數列0,,-7,…的項?如果是,是第幾項?如果不是,請說明理由.

解:由題意可知a1=0,,因而此數列的通項公式為.

令,解得.因為沒有正整數解,所以-20不是這個數列的項.

課堂小結

師:(1)本節課你們學了什么?(2)要注意什么?(3)在生:活中能否運用?(讓學生:反思、歸納、總結,這樣來培養學生:的概括能力、表達能力)

生:通過本課時的學習,首先要理解和掌握等差數列的定義及數學表達式a n-a n-1=d(n≥2);其次要會推導等差數列的通項公式an=a1+(n-1)d(n≥1).

2023等差數列教案【篇4】

[教學目標]

1.知識與技能目標:掌握等差數列的概念;理解等差數列的通項公式的推導過程;了解等差數列的函數特征;能用等差數列的通項公式解決相應的一些問題。

2.過程與方法目標:讓學生親身經歷“從特殊入手,研究對象的性質,再逐步擴大到一般”這一研究過程,培養他們觀察、分析、歸納、推理的能力。通過階梯性的強化練習,培養學生分析問題解決問題的能力。

3.情感態度與價值觀目標:通過對等差數列的研究,培養學生主動探索、勇于發現的求索精神;使學生逐步養成細心觀察、認真分析、及時總結的好習慣。

[教學重難點]

1.教學重點:等差數列的概念的理解,通項公式的推導及應用。

2.教學難點:

(1)對等差數列中“等差”兩字的把握;

(2)等差數列通項公式的推導。

[教學過程]

一.課題引入

創設情境引入課題:(這節課我們將學習一類特殊的數列,下面我們看這樣一些例子)

二、新課探究

(一)等差數列的定義

1、等差數列的定義

如果一個數列從第二項起,每一項與前一項的差等于同一個常數,那么這個數列就叫等差數列。這個常數叫做等差數列的公差,通常用字母d來表示。

(1)定義中的關健詞有哪些?

(2)公差d是哪兩個數的差?

(二)等差數列的通項公式

探究1:等差數列的通項公式(求法一)

如果等差數列首項是,公差是,那么這個等差數列如何表示?呢?

根據等差數列的定義可得:

因此等差數列的通項公式就是:,

探究2:等差數列的通項公式(求法二)

根據等差數列的定義可得:

將以上-1個式子相加得等差數列的通項公式就是:,

三、應用與探索

例1、(1)求等差數列8,5,2,…,的第20項。

(2)等差數列-5,-9,-13,…,的第幾項是–401?

(2)、分析:要判斷-401是不是數列的項,關鍵是求出通項公式,并判斷是否存在正整數n,使得成立,實質上是要求方程的正整數解。

例2、在等差數列中,已知=10,=31,求首項與公差d.

解:由,得。

在應用等差數列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。

鞏固練習

1.等差數列{an}的前三項依次為a-6,-3a-5,-10a-1,則a=()。

2.一張梯子最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。求公差d。

四、小結

1.等差數列的通項公式:

公差;

2.等差數列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;

3.判斷一個數列是否為等差數列只需看是否為常數即可;

4.利用從特殊到一般的思維去發現數學系規律或解決數學問題.

五、作業:

1、必做題:課本第40頁習題2.2第1,3,5題

2、選做題:如何以最快的速度求:1+2+3+???+100=

2023等差數列教案【篇5】

教學目標

1.明確等差數列的定義.

2.掌握等差數列的通項公式,會解決知道中的三個,求另外一個的問題

3.培養學生觀察、歸納能力.

教學重點

1. 等差數列的概念;

2. 等差數列的通項公式

教學難點

等差數列“等差”特點的理解、把握和應用

教學方法

啟發式數學

教具準備

投影片1張(內容見下面)

教學過程

(I)復習回顧

師:上兩節課我們共同學習了數列的定義及給出數列的兩種方法——通項公式和遞推公式。這兩個公式從不同的角度反映數列的特點,下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數列有什么共同的特點?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:積極思考,找上述數列共同特點。

對于數列① (1≤n≤6); (2≤n≤6)

對于數列② -2n(n≥1)

(n≥2)

對于數列③

(n≥1)

(n≥2)

共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數。

師:也就是說,這些數列均具有相鄰兩項之差“相等”的特點。具有這種特點的數列,我們把它叫做等差數。

一、定義:

等差數列:一般地,如果一個數列從第2項起,每一項與空的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示。

如:上述3個數列都是等差數列,它們的公差依次是1,-2, 。

二、等差數列的通項公式

師:等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列 的首項是 ,公差是d,則據其定義可得:

若將這n-1個等式相加,則可得:

即:

即:

即:

……

由此可得:

師:看來,若已知一數列為等差數列,則只要知其首項 和公差d,便可求得其通項 。

如數列① (1≤n≤6)

數列②: (n≥1)

數列③:

(n≥1)

由上述關系還可得:

即:

則: =

如:

三、例題講解

例1:(1)求等差數列8,5,2…的第20項

(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?

解:(1)由

n=20,得

(2)由

得數列通項公式為:

由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數列的第100項。

(Ⅲ)課堂練習

生:(口答)課本P118練習3

(書面練習)課本P117練習1

師:組織學生自評練習(同桌討論)

(Ⅳ)課時小結

師:本節主要內容為:①等差數列定義。

即 (n≥2)

②等差數列通項公式 (n≥1)

推導出公式:

(V)課后作業

一、課本P118習題3.2 1,2

二、1.預習內容:課本P116例2—P117例4

2.預習提綱:①如何應用等差數列的定義及通項公式解決一些相關問題?

②等差數列有哪些性質?

板書設計

課題

一、定義

1.(n≥2)

一、通項公式

2.公式推導過程

例題

教學后記

143636
領取福利

微信掃碼領取福利

微信掃碼分享