国产一区久久精品_性xxxxx_国产精品久久久久无码av_免费观看视频www

好多范文網 haoduofanwen.com,好用的范文大全!

初中數學優秀教案15篇

網友投稿 分享 時間: 加入收藏 我要投稿 點贊

初中數學優秀教案(15篇)

無論您是新手教師還是資深教育工作者,本教案都能幫助您提高教學效果。以下是小編為大家收集的初中數學優秀教案,歡迎閱讀,希望大家能夠喜歡。

初中數學優秀教案15篇

初中數學優秀教案篇1

教學目標

1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;

2、理解一元一次不等式組應用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

3、體驗數學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。

教學難點

正確分析實際問題中的不等關系,列出不等式組。

知識重點

建立不等式組解實際問題的數學模型。

探究實際問題

出示教科書第145頁例2(略)

問:(1)你是怎樣理解“不能完成任務”的數量含義的?

(2)你是怎樣理解“提前完成任務”的數量含義的'?

(3)解決這個問題,你打算怎樣設未知數?列出怎樣的不等式?

師生一起討論解決例2.

歸納小結

1、教科書146頁“歸納”(略).

2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?

在討論或議論的基礎上老師揭示:

步法一致(設、列、解、答);本質有區別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。

初中數學優秀教案篇2

教學目標:

(一)知識與技能

理解單項式及單項式系數、次數的概念;能準確迅速地確定一個單項式的系數和次數;會用含字母的式子表示實際問題中的數量關系。

(二)過程與方法

1.在經歷用字母表示數量關系的過程中,發展符號感;

2. 通過小組討論、合作學習等方式,經歷概念的形成過程,培養學生自主探索知識和合作交流能力

(三)情感態度價值觀

1.通過豐富多彩的現實情景,讓學生經歷從具體問題中抽象出數量關系,在解決問題中了解數學的價值,增長“用數學”的信心.

2.通過用含字母的式子描述現實世界中的數量關系,認識到它是解決實際問題的重要數學工具之一。

教學重、難點:

重點:單項式及單項式系數、次數的概念。

難點:單項式次數的概念;單項式的書寫格式及注意點。

教學方法:

引導——探究式

在感性材料的基礎上,學生自主探究現實情景中用字母表示數的問題,通過觀察、分析、比較,找出材料中個體的共同點,教師引導學生共同抽象、概括單項式及相關的概念.

教具準備:

多媒體課件、小黑板.

教學過程:

一、 創設情境,引入新課

出示一張奔馳在青藏鐵路線上的列車照片,并配上歌曲《天路》,邊欣賞邊向學生介紹青藏鐵路所創造的歷史之最。

情境問題:

青藏鐵路西線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據這些數據回答:列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?

設計意圖:從學生熟悉的情境出發,創設情境,讓學生感受青藏鐵路的偉大成就,激發

愛國主義情感,得到一次情感教育。

解:根據路程、速度、時間之間的關系:路程=速度×時間

2小時行駛的路程是:100×2=200(千米)

3小時行駛的路程是:100×3=300(千米)

t小時行駛的路程是:100×t=100t(千米)

注意:在含有字母的式子中若出現乘號,通常將乘號寫作“ · ”或省略不寫。

如:100×a可以寫成100a或100a。

代數式:用基本的運算符號(運算包括加、減、乘除、乘方等)把數和表示數的字母連接起來的式子。

代數式可以簡明地表示數量和數量的關系,本節我們就來學習最基本也是最重要的'一類代數式整式。

設計意圖:從學生已有的數學經驗:路程=速度×時間出發,建立新舊知識之間的聯系

讓學生歷一個從一般到特殊再到一般的認識過程,發展學生的認知觀念。

二、合作交流,探究新知

探究

思考:用含字母的式子填空(獨立完成),并觀察列出的式子有什么共同特點(小組可交流討論)。

1、邊長為a的正方體的表面積是__,體積是__.

2、鉛筆的單價是x元,圓珠筆的單價是鉛筆的2.5倍,則圓珠筆的單價是___元。

3、一輛汽車的速度是v千米∕小時,它t小時行駛的路程為__千米。

4、數n的相反數是__。

解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n

思考:它們有什么共同的特點?

6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n

單項式:數與字母、字母與字母的乘積。

注意:單獨的一個數或字母也是單項式。

設計意圖:從熟悉的實際背景出發,充分讓學生自己觀察、自己發現、自己描述,進行自主學習和合作交流,獲得數學猜想和數學經驗,滿足學生的表現欲和探究欲,使學生學得輕松愉快,充分體現課堂教學的開放性。

火眼金睛

下列各代數式中哪些是單項式哪些不是?

(1)a (2) 0 (3) a2

(4) 6a (5)

(6)

(7)3a+2b (8)xy2

設計意圖:加強學生對不同形式的單項式的直觀認識。

解剖單項式

系數:單項式中的數字因數。

如:-3x的系數是 ,-ab的系數是 , 的系數是 。

次數:一個單項式中的所有字母的指數的和。

如:-3x的次數是 ,ab的次數是 。

小試身手

單項式 2a 2 -1.2h xy2 -t2 -32x2y

系數

次數

設計意圖:了解學生對單項式系數、次數的概念是否理解,找出存在的問題,從而進一步鞏固概念。

單項式的注意點:

(1)數與字母相乘時,數應寫在字母的___,且乘號可_________;

(2)帶分數作為系數時,應改寫成_______的形式;

(3)式子中若出現相除時,應把除號寫成____的形式;

(4)把“1”或“-1”作為項的系數時,“1”可以__不寫。

行家看門道

①1x ②-1x

③a×3 ④a÷2

⑤ ⑥m的系數為1,次數為0

⑦ 的系數為2,次數為2

設計意圖:單項式的書寫和表示有其特有的格式和注意點,通過以上兩個題目讓學生進一步明確注意點。

三、例題講解,鞏固新知

例1:用單項式填空,并指出它們的系數和次數:

(1)每包書有12冊,n包書有 冊;

(2)底邊長為a,高為h的三角形的面積 ;

(3)一個長方體的長和寬都是a,高是h,它的體積是 ;

(4)一臺電視機原價a元,現按原價的9折出售,這臺電視機現在的售價

為 元;

(5)一個長方形的長0.9,寬是a,這個長方形的面積是 .

解:(1)12n,它的系數是12,次數是1

(2) ,它的系數是 , 次數是2;

(3)a2h,它的系數是1,次數是3;

(4)0.9a,它的系數是0.9,次數是1;

(5)0.9a,它的系數是0.9,次數是1。

設計意圖:學生能用單項式表示簡單的實際問題中的數量關系,并進一步鞏固單項式的系數、次數的概念。

試一試

你還能賦予0.9a一個含義嗎?

設計意圖:同一個式子可以表示不同的含義,通過這個例子讓學生進一步體會式子更具有一般性,而且發散學生思維。

大膽嘗試

寫出一個單項式,使它的系數是2,次數是3.

設計意圖:充分發揮學生的想象力,讓每一個學生都有獲得成功的體驗,為不同程度的學生一個展示自我的機會,激發他們的學習興趣。

四、拓展提高

嘗試應用

用單項式填空,并指出它們的系數和次數:

(1)全校學生總數是x,其中女生占總數48%,則女生人數是 ,男生人數是 ;

(2)一輛長途汽車從楊柳村出發,3小時后到達相距s千米的溪河鎮,這輛長途汽車的平均速度是 ;

(3)產量由m千克增長10%,就達到 千克;

設計意圖:讓學生感受單項式在實際生活中的應用,進一步掌握單項式及單項式系數、次數的概念。

能力提升

1、已知-xay是關于x、y的三次單項式,那么a= ,b= .

2、若-ax2yb+1是關于x、y的五次單項式,且系數為-3,則a= ,b= .

設計意圖:照顧學有余力的學生,拓展學生思維,讓學生體會跳一跳、摘桃子的樂趣。

五、小結:

本節課你感受到了嗎?

生活中處處有數學

本節課我們學了什么?你能說說你的收獲嗎?

1、單項式的概念: 數與字母、字母與字母的乘積。

2、單項式的系數、次數的概念。

系數:單項中的數字因數;

次數:單項中所有字母的指數和。

3、會用單項式表示實際問題中的數量關系,注意列式時式子要規范書寫。

設計意圖:通過回顧和反思,讓學生看到自己的進步,激勵學生,使學生相信自己在今后的學習中不斷進步,不斷積累數學活動經驗,促進學生形成良好的心理品質。

結束寄語

悟性的高低取決于有無悟“心”,其實,人與人的差別就在于你是否去思考,去發現!

設計意圖:這是對學生的激勵也是對學生的一種期盼,可以增進師生間的情感交流。

六、板書設計

2.1 整式

單項式概念 探究 例1 多

單項式的系數概念 觀察交流 嘗試應用 媒

單項式的次數概念 能力提升 體

七、作業:

1.作業本(必做)。

2. 請下面圖片設計一個故事情境,要求其中包含的數量關系能夠用單項式表示,并且指出它們的系數和次數(選做)。

設計意圖:布置分層作業,既讓學生掌握基礎知識,又使學有余力的學生有所提高。讓學生自行編題是一種創造性的思維活動,它可以改變一味由教師出題的形式,活躍學生思維,使學生能夠透徹理解知識,同時培養同學之間的競爭意識。

八、設計理念:

本節課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續學習。為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數、次數,為進一步學習新知做好鋪墊。

針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將提供大量感性材料,以啟發引導為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養起學生觀察、分析、抽象、概括的能力,同時注重培養學生由感性認識上升到理性認識,為進一步學習同類項打下堅實的基礎。

初中數學優秀教案篇3

一、素質教育目標

(一)知識教學點

1.掌握的三要素,能正確畫出.

2.能將已知數在上表示出來,能說出上已知點所表示的數.

(二)能力訓練點

1.使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識.

2.對學生滲透數形結合的思想方法.

(三)德育滲透點

使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點.

(四)美育滲透點

通過畫,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受.

二、學法引導

1.教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發情趣—手腦并用—啟發誘導—反饋矯正”的教學方法.

2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習.

三、重點、難點、疑點及解決辦法

1.重點:正確掌握畫法和用上的點表示有理數.

2.難點:有理數和上的點的.對應關系。

四、課時安排

1課時

五、教具學具準備

電腦、投影儀、自制膠片.

六、師生互動活動設計

師生同步畫,學生概括三要素,師出示投影,生動手動腦練習

七、教學步驟

(一)創設情境,引入新課

師:大家知識溫度計的用途是什么?

生:溫度計可以測量溫度

(出示投影1)

三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.

師:三個溫度計所表示的溫度是多少?

生:2℃,-5℃,0℃.

我們能否用類似溫度計的圖形表示有理數呢?

這種表示數的圖形就是今天我們要學的內容—(板書課題).

【教法說明】從溫度計用標有讀數的刻度來表示溫度的高低這個事實出發,引出本節課所要學的內容—.再從溫度計這個實物形象抽象出來研究.既激發了學生的學習興趣,又使學生受到把實際問題抽象成數學問題的訓練,培養了用數學的意識.

(二)探索新知,講授新課

1.的畫法

與溫度計類似,可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零,具體做法如下:

第一步:畫直線定原點原點表示0(相當于溫度計上的0℃).

第二步:規定從原點向右的為正方向那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).

第三步:選擇適當的長度為單位長度(相當于溫度計上每1℃占1小格的長度).

【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法.

讓學生觀察畫好的直線,思考以下問題:

(出示投影1)

(1)原點表示什么數?

(2)原點右方表示什么數?原點左方表示什么數?

(3)表示+2的點在什么位置?表示-1的點在什么位置?

(4)原點向右0.5個單位長度的A點表示什么數?原點向左個單位長度的B點表示什么數?

根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義。

學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充。

初中數學優秀教案篇4

知識技能目標

1、理解反比例函數的圖象是雙曲線,利用描點法畫出反比例函數的圖象,說出它的性質;

2、利用反比例函數的圖象解決有關問題。

過程性目標

1、經歷對反比例函數圖象的觀察、分析、討論、概括過程,會說出它的性質;

2、探索反比例函數的圖象的性質,體會用數形結合思想解數學問題。

教學過程

一、創設情境

上節的練習中,我們畫出了問題1中函數的圖象,發現它并不是直線。那么它是怎么樣的曲線呢?本節課,我們就來討論一般的反比例函數(k是常數,k≠0)的圖象,探究它有什么性質。

二、探究歸納

1、畫出函數的圖象。

分析畫出函數圖象一般分為列表、描點、連線三個步驟,在反比例函數中自變量x≠0。

1、列表:這個函數中自變量x的取值范圍是不等于零的一切實數,列出x與y的對應值:

2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。

3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數的圖象。

上述圖象,通常稱為雙曲線(hyperbola)。

提問這兩條曲線會與x軸、y軸相交嗎?為什么?

學生試一試:畫出反比例函數的圖象(學生動手畫反比函數圖象,進一步掌握畫函數圖象的步驟)。

學生討論、交流以下問題,并將討論、交流的結果回答問題。

1、這個函數的圖象在哪兩個象限?和函數的圖象有什么不同?

2、反比例函數(k≠0)的圖象在哪兩個象限內?由什么確定?

3、聯系一次函數的性質,你能否總結出反比例函數中隨著自變量x的增加,函數y將怎樣變化?有什么規律?

反比例函數有下列性質:

(1)當k>0時,函數的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;

(2)當k<0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。

1、雙曲線的兩個分支與x軸和y軸沒有交點;

2、雙曲線的兩個分支關于原點成中心對稱。

以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?

在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮上的時間少。

在問題2中反映了在面積一定的`情況下,飼養場的一邊越長,另一邊越小。

三、實踐應用

例1若反比例函數的圖象在第二、四象限,求m的值。

分析由反比例函數的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。

解由題意,得解得。

例2已知反比例函數(k≠0),當x>0時,y隨x的增大而增大,求一次函數y=kx—k的圖象經過的象限。

分析由于反比例函數(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。

解因為反比例函數(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數y=kx—k的圖象經過一、二、四象限。

例3已知反比例函數的圖象過點(1,—2)。

(1)求這個函數的解析式,并畫出圖象;

(2)若點A(—5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?

分析(1)反比例函數的圖象過點(1,—2),即當x=1時,y=—2。由待定系數法可求出反比例函數解析式;再根據解析式,通過列表、描點、連線可畫出反比例函數的圖象;

(2)由點A在反比例函數的圖象上,易求出m的值,再驗證點A關于兩坐標軸和原點的對稱點是否在圖象上。

解(1)設:反比例函數的解析式為:(k≠0)。

而反比例函數的圖象過點(1,—2),即當x=1時,y=—2。

所以,k=—2。

即反比例函數的解析式為:。

(2)點A(—5,m)在反比例函數圖象上,所以,

點A的坐標為。

點A關于x軸的對稱點不在這個圖象上;

點A關于y軸的對稱點不在這個圖象上;

點A關于原點的對稱點在這個圖象上;

例4已知函數為反比例函數。

(1)求m的值;

(2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?

(3)當—3≤x≤時,求此函數的最大值和最小值。

解(1)由反比例函數的定義可知:解得,m=—2。

(2)因為—2<0,所以反比例函數的圖象在第二、四象限內,在各象限內,y隨x的增大而增大。

(3)因為在第個象限內,y隨x的增大而增大,

所以當x=時,y最大值=;

當x=—3時,y最小值=。

所以當—3≤x≤時,此函數的最大值為8,最小值為。

例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。

(1)寫出用高表示長的函數關系式;

(2)寫出自變量x的取值范圍;

(3)畫出函數的圖象。

解(1)因為100=5xy,所以。

(2)x>0。

(3)圖象如下:

說明由于自變量x>0,所以畫出的反比例函數的圖象只是位于第一象限內的一個分支。

四、交流反思

本節課學習了畫反比例函數的圖象和探討了反比例函數的性質。

1、反比例函數的圖象是雙曲線(hyperbola)。

2、反比例函數有如下性質:

(1)當k>0時,函數的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;

(2)當k<0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。

五、檢測反饋

1、在同一直角坐標系中畫出下列函數的圖象:

(1);(2)。

2、已知y是x的反比例函數,且當x=3時,y=8,求:

(1)y和x的函數關系式;

(2)當時,y的值;

(3)當x取何值時,?

3、若反比例函數的圖象在所在象限內,y隨x的增大而增大,求n的值。

4、已知反比例函數經過點A(2,—m)和B(n,2n),求:

(1)m和n的值;

(2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0<x2,試比較y1和y2的大小。< p="">

初中數學優秀教案篇5

教學目標

1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;

2. 通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;

3.通過加法運算練習,培養學生的運算能力。

教學建議

(一)重點、難點分析

本節課的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略加號與括號的代數和的計算.

由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,這是因為有理數加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.

(二)知識結構

(三)教法建議

1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.

2.關于“去括號法則”,只要學生了解,并不要求追究所以然.

3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如

-3-4表示-3、-4兩數的代數和,

-4+3表示-4、+3兩數的代數和,

3+4表示3和+4的.代數和

等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。

4.先把正數與負數分別相加,可以使運算簡便。

5.在交換加數的位置時,要連同前面的符號一起交換。如

12-5+7 應變成 12+7-5,而不能變成12-7+5。

有理數的加減混合運算(一)

一、素質教育目標

(一)知識教學點

1.了解:代數和的概念.

2.理解:有理數加減法可以互相轉化.

3.應用:會進行加減混合運算.

(二)能力訓練點

培養學生的口頭表達能力及計算的準確能力.

(三)德育滲透點

通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想.

(四)美育滲透點

學習了本節課就知道一切加減法運算都可以統一成加法運算.體現了數學的統一美.

二、學法引導

1.教學方法:采用嘗試指導法,體現學生主體地位,每一環節,設置一定題目進行鞏固練

習,步步為營,分散難點,解決關鍵問題.

2.學生寫法:練習→尋找簡單的一般性的方法→練習鞏固.

三、重點、難點、疑點及解決辦法

1.重點:把加減混合運算算式理解為加法算式.

2.難點:把省略括號和的形式直接按有理數加法進行計算.

四、課時安排

1課時

五、教具學具準備

投影儀或電腦、自制膠片.

六、師生互動活動設計

教師提出問題學生練習討論,總結歸納加減混合運算的一般步驟,教師出示練習題,學生練習反饋.

七、教學步驟

(一)創設情境,復習引入

師:前面我們學習了有理數的加法和減法,同學們學得都很好!請同學們看以下題目: -9+(+6);(-11)-7.

師:(1)讀出這兩個算式.

(2)“+、-”讀作什么?是哪種符號?

“+、-”又讀作什么?是什么符號?

學生活動:口答教師提出的問題.

師繼續提問:(1)這兩個題目運算結果是多少?

(2)(-11)-7這題你根據什么運算法則計算的?

學生活動:口答以上兩題(教師訂正).

師小結:減法往往通過轉化成加法后來運算.

【教法說明】為了進行有理數的加減混合運算,必須先對有理數加法,特別是有理數減法的題目進行復習,為進一步學習加減混合運算奠定基礎.這里特別指出“+、-”有時表示性質符號,有時是運算符號,為在混合運算時省略加號、括號時做必要的準備工作.

師:把兩個算式-9+(+6)與(-11)-7之間加上減號就成了一個題目,這個題目中既有加法又有減法,就是我們今天學習的有理數的加減混合運算.(板書課題2.7有理數的加減混合運算(1))

教學說明:由復習的題目巧妙地填“-”號,就變成了今天將學的加減混合運算內容,使學生更形象、更深刻地明白了有理數加減混合運算題目組成.

(二)探索新知,講授新課

1.講評(-9)+(-6)-(-11)-7.

(1)省略括號和的形式

師:看到這個題你想怎樣做?

學生活動:自己在練習本上計算.

教師針對學生所做的方法區別優劣.

【教法說明】題目出示后,教師不急于自己講評,而是讓學生嘗試,給了學生一個展示自己的機會,這時,有的學生可能是按從左到右的順序運算,有的同學可能是先把減法都轉化成了加法,然后按加法的計算法則再計算??這樣在不同的方法中,學生自己就會尋找到簡單的、一般性的方法.

師:我們對此類題目經常采用先把減法轉化為加法,這時就成了-9,+6,+11,-7的和,加號通常可以省略,括號也可以省略,即:

原式=(-9)+(+6)+(+11)+(-7)

=-9+6+11-7.

提出問題:雖然加號、括號省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以這個算式可以讀成??

學生活動:先自己練習嘗試用兩種讀法讀,口答(教師糾正).

【教法說明】教師根據學生所做的方法,及時指出最具代表性的方法來給學生指明方向,在把算式寫成省略括號代數和的形式后,通過讓學生練習兩種讀法,可以加深對此算式的理解,以此來訓練學生的觀察能力及口頭表達能力.

鞏固練習:(出示投影1)

1.把下列算式寫成省略括號和的形式,并把結果用兩種讀法讀出來.

(1)(+9)-(+10)+(-2)-(-8)+3;

(2)+()-()-().

2.判斷

式子-7+1-5-9的正確讀法是().

A.負7、正1、負5、負9;

B.減7、加1、減5、減9;

C.負7、加1、負5、減9;

D.負7、加1、減5、減9;

學生活動:1題兩個學生板演,兩個學生用兩種讀法讀出結果,其他同學自行演練,然后同桌讀出互相糾正,2題搶答.

【教法說明】這兩題旨意在鞏固怎樣把加減混合運算題目都轉化成加法運算寫成代數和的形式,這里特別注意了代數和形式的兩種讀法.

2.用加法運算律計算出結果

師:既然算式能看成幾個數的和,我們可以運用加法的運算律進行計算,通常同號兩數放在一起分別相加.

-9+6+11-7

=-9-7+6+11.

學生活動:按教師要求口答并讀出結果.

鞏固練習:(出示投影2)

填空:

1.-4+7-4=-______________-_______________+_______________

2.+6+9-15+3=_____________+_____________+_____________-_____________

3.-9-3+2-4=____________9____________3____________4____________2

4.____________________________________

學生活動:討論后回答.

【教法說明】學生運用加法交換律時,很可能產生“-9+7+11-6”這樣的錯誤,教師先讓學生自己去做,然后糾正,又做一組鞏固練習,使學生牢固掌握運用加法運算律把同號數放在一起時,一定要連同前面的符號一起交換這一知識點.

師:-9-7+6+11怎樣計算?

學生活動:口答

[板書]

-9-7+6+11

=-16+17

=1

鞏固練習:(出示投影3)

1.計算(1)-1+2-3-4+5;

(2).

2.做完前面兩個題目計算:(1)(+9)-(+10)+(-2)-(-8)+3;

(2).

學生活動:四個同學板演,其他同學在練習本上做.

【教法說明】針對一道例題分成三部分,每一部分都有一組相應的鞏固練習,這樣每一步學生都掌握得較牢固,這時教師一定要總結有理數加減混合運算的方法,使分散的知識有相對的集中.

師小結:有理數加減法混合運算的題目的步驟為:

1.減法轉化成加法;

2.省略加號括號;

3.運用加法交換律使同號兩數分別相加;

4.按有理數加法法則計算.

(三)反饋練習

(出示投影4)

計算:(1)12-(-18)+(-7)-15;

(2).

學生活動:可采用同桌互相測驗的方法,以達到糾正錯誤的目的.

【教法說明】這兩個題目是本節課的重點.采用測驗的方式來達到及時反饋.

(四)歸納小結

師:1.怎樣做加減混合運算題目?

2.省略括號和的形式的兩種讀法?

學生活動:口答.

【教法說明】小結不是教師單純的總結,而是讓學生參與回答,在學生思考回答的過程中將本節的重點知識納入知識系統.

八、隨堂練習

1.把下列各式寫成省略括號的和的形式

(1)(-5)+(+7)-(-3)-(+1);

(2)10+(-8)-(+18)-(-5)+(+6).

2.說出式子-3+5-6+1的兩種讀法.

3.計算

(1)0-10-(-8)+(-2);

(2)-4.5+1.8-6.5+3-4;

(3).

九、布置作業

(一)必做題:1.計算:(1)-8+12-16-23;

(2);

(3)-40-28-(-19)+(-24)-(-32);

(4)-2.7+(-3.2)-(1.8)-2.2;

(二)選做題:(1)當時,,,哪個最大,哪個最小?

(2)當時,,,哪個最大,哪個最小?

十、板書設計

初中數學優秀教案篇6

教學目標

1.知識與技能

能運用運算律探究去括號法則,并且利用去括號法則將整式化簡.

2.過程與方法

經歷類比帶有括號的有理數的運算,發現去括號時的符號變化的規律,歸納出去括號法則,培養學生觀察、分析、歸納能力.

3.情感態度與價值觀

培養學生主動探究、合作交流的意識,嚴謹治學的學習態度.

重、難點與關鍵

1.重點:去括號法則,準確應用法則將整式化簡.

2.難點:括號前面是“-”號去括號時,括號內各項變號容易產生錯誤.

3.關鍵:準確理解去括號法則.

教具準備

投影儀.

教學過程

一、新授

利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?

現在我們來看本章引言中的問題(3):

在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為

100t+120(t-0.5)千米①

凍土地段與非凍土地段相差

100t-120(t-0.5)千米②

上面的式子①、②都帶有括號,它們應如何化簡?

思路點撥:教師引導,啟發學生類比數的運算,利用分配律.學生練習、交流后,教師歸納:

利用分配律,可以去括號,合并同類項,得:

100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

我們知道,化簡帶有括號的整式,首先應先去括號.

上面兩式去括號部分變形分別為:

+120(t-0.5)=+120t-60③

-120(t-0.5)=-120+60④

比較③、④兩式,你能發現去括號時符號變化的規律嗎?

思路點撥:鼓勵學生通過觀察,試用自己的語言敘述去括號法則,然后教師板書(或用屏幕)展示:

如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;

如果括號外的因數是負數,去括號后原括號內各項的`符號與原來的符號相反.

特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).

利用分配律,可以將式子中的括號去掉,得:

+(x-3)=x-3(括號沒了,括號內的每一項都沒有變號)

-(x-3)=-x+3(括號沒了,括號內的每一項都改變了符號)

去括號規律要準確理解,去括號應對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;另外,括號內原有幾項去掉括號后仍有幾項.

二、范例學習

例1.化簡下列各式:

(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

思路點撥:講解時,先讓學生判定是哪種類型的去括號,去括號后,要不要變號,括號內的每一項原來是什么符號?去括號時,要同時去掉括號前的符號.為了防止錯誤,題(2)中-3(a2-2b),先把3乘到括號內,然后再去括號.

解答過程按課本,可由學生口述,教師板書.

例2.兩船從同一港口同時出發反向而行,甲船順水,乙船逆水,兩船在靜水中的速度都是50千米/時,水流速度是a千米/時.

(1)2小時后兩船相距多遠?

(2)2小時后甲船比乙船多航行多少千米?

教師操作投影儀,展示例2,學生思考、小組交流,尋求解答思路.

思路點撥:根據船順水航行的速度=船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時,乙船速度為(50-a)千米/時,2小時后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時出發反向而行,所以兩船相距等于甲、乙兩船行程之和.

解答過程按課本.

去括號時強調:括號內每一項都要乘以2,括號前是負因數時,去掉括號后,括號內每一項都要變號.為了防止出錯,可以先用分配律將數字2與括號內的各項相乘,然后再去括號,熟練后,再省去這一步,直接去括號.

三、鞏固練習

1.課本第68頁練習1、2題.

2.計算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

思路點撥:一般地,先去小括號,再去中括號.

四、課堂小結

去括號是代數式變形中的一種常用方法,去括號時,特別是括號前面是“-”號時,括號連同括號前面的“-”號去掉,括號里的各項都改變符號.去括號規律可以簡單記為“-”變“+”不變,要變全都變.當括號前帶有數字因數時,這個數字要乘以括號內的每一項,切勿漏乘某些項。

五、作業布置

1.課本第71頁習題2.2第2、3、5、8題。

2.選用課時作業設計。

初中數學優秀教案篇7

一、教材分析

本節內容是人民教育出版社出版《義務教育課程實驗教科書(五四學制)數學》(供天津用)八年級下冊第十章整式第一節整式加減第2小節整式的加減。

二、設計思想

本節內容是學生掌握了“整式”有關概念的延展學習,為后繼學習整式運算、因式分解、一元二次方程及函數知識奠定基礎,是“數”向“式”的正式過度,具有十分重要地位。

八年級學生已具有了較強的數的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結合教材,立足讓每個學生都有發展的宗旨,我采用合作探究的學習方式開展教學活動,通過設計有針對性、多樣式的問題引導學生,給學生提供充足的、和諧的探索空間讓學生學習。通過學習活動不但培養學生化簡意識,提升數學運算技能而且讓學生深刻體會到數學是解決實際問題的重要工具,增強應用數學的意識。

三、教學目標:

(一)知識技能目標:

1、理解同類項的含義,并能辨別同類項。

2、掌握合并同類項的方法,熟練的合并同類項。

3、掌握整式加減運算的方法,熟練進行運算。

(二)過程方法目標:

1、通過探究同類項定義、合并同類項的方法的活動,培養學生觀察、歸納、探究的能力。

2、通過合并同類項、整式加減運算的'練習活動,提高學生運算技能,提升運算的準確率培養學生化簡意識,發展學生的抽象概括能力。

3、通過研究引例、探究例1的活動,發展學生的形象思維,初步培養學生的符號感。

(三)情感價值目標:

1、通過交流協商、分組探究,培養學生合作交流的意識和敢于探索未知問題的精神。

2、通過學習活動培養學生科學、嚴謹的學習態度。

四、教學重、難點:

合并同類項

五、教學關鍵:

同類項的概念

六、教學準備:

教師:

1、篩選數學題目,精心設置問題情境。

2、制作大小不等的兩個長方體紙盒實物模型,并能展開。

3、設計多媒體教學課件。(要凸顯①單項式中系數、字母、指數的特征②長方體紙盒立體圖、展開圖。)

學生:

1、復習有關單項式的概念、有理數四則運算及去括號的法則)

2、每小組制作大小不等的兩個長方體紙盒模型。

初中數學優秀教案篇8

教學目標

1.使學生正確理解的意義,掌握的三要素;

2.使學生學會由上的已知點說出它所表示的數,能將有理數用上的點表示出來;

3.使學生初步理解數形結合的思想方法.

教學重點和難點

重點:初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數.

難點:正確理解有理數與上點的對應關系.

課堂教學過程設計

一、從學生原有認知結構提出問題

1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?

2.用“射線”能不能表示有理數?為什么?

3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?

待學生回答后,教師指出,這就是我們本節課所要學習的內容——.

二、講授新課

讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):

1.畫一條水平的'直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

在此基礎上,給出的定義,即規定了原點、正方向和單位長度的直線叫做.

進而提問學生:在上,已知一點P表示數-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.

三、運用舉例 變式練習

例1 畫一個,并在上畫出表示下列各數的點:

例2 指出上A,B,C,D,E各點分別表示什么數.

課堂練習

示出來.

2.說出下面上A,B,C,D,O,M各點表示什么數?

最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.

四、小結

指導學生閱讀教材后指出:是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.

本節課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數,至于上的哪些點不能表示有理數,這個問題以后再研究.

五、作業

1.在下面上:

(1)分別指出表示-2,3,-4,0,1各數的點.

(2)A,H,D,E,O各點分別表示什么數?

2.在下面上,A,B,C,D各點分別表示什么數?

3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數的點:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初中數學優秀教案篇9

教學目標:

利用數形結合的數學思想分析問題解決問題。

利用已有二次函數的知識經驗,自主進行探究和合作學習,解決情境中的數學問題,初步形成數學建模能力,解決一些簡單的實際問題。

在探索中體驗數學來源于生活并運用于生活,感悟二次函數中數形結合的美,激發學生學習數學的興趣,通過合作學習獲得成功,樹立自信心。

教學重點和難點:

運用數形結合的思想方法進行解二次函數,這是重點也是難點。

教學過程:

(一)引入:

分組復習舊知。

探索:從二次函數y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?

可引導學生從幾個方面進行討論:

(1)如何畫圖

(2)頂點、圖象與坐標軸的交點

(3)所形成的三角形以及四邊形的面積

(4)對稱軸

從上面的問題導入今天的課題二次函數中的圖象與性質。

(二)新授:

1、再探索:二次函數y=x2+4x+3圖象上找一點,使形成的圖形面積與已知圖形面積有數量關系。例如:拋物線y=x2+4x+3的頂點為點A,且與x軸交于點B、C;在拋物線上求一點E使SBCE= SABC。

再探索:在拋物線y=x2+4x+3上找一點F,使BCE與BCD全等。

再探索:在拋物線y=x2+4x+3上找一點M,使BOM與ABC相似。

2、讓同學討論:從已知條件如何求二次函數的解析式。

例如:已知一拋物線的頂點坐標是C(2,1)且與x軸交于點A、點B,已知SABC=3,求拋物線的解析式。

(三)提高練習

根據我們學校人人皆知的船模特色項目設計了這樣一個情境:

讓班級中的上科院小院士來簡要介紹學校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的'解析式。

讓學生在練習中體會二次函數的圖象與性質在解題中的作用。

(四)讓學生討論小結(略)

(五)作業布置

1、在直角坐標平面內,點O為坐標原點,二次函數y=x2+(k—5)x—(k+4)的圖象交x軸于點A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

(1)求二次函數的解析式;

(2)將上述二次函數圖象沿x軸向右平移2個單位,設平移后的圖象與y軸的交點為C,頂點為P,求 POC的面積。

2、如圖,一個二次函數的圖象與直線y= x—1的交點A、B分別在x、y軸上,點C在二次函數圖象上,且CBAB,CB=AB,求這個二次函數的解析式。

3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數軸的單位長度,建立平面直角坐標系,如圖2。

(1)求出圖2上以這一部分拋物線為圖象的函數解析式,寫出函數定義域;

(2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內實際橋長(備用數據: ,計算結果精確到1米)

初中數學優秀教案篇10

教學目標

1、知識與技能

能應用所學的函數知識解決現實生活中的問題,會建構函數“模型”。

2、過程與方法

經歷探索一次函數的應用問題,發展抽象思維。

3、情感、態度與價值觀

培養變量與對應的思想,形成良好的函數觀點,體會一次函數的應用價值。

重、難點與關鍵

1、重點:一次函數的應用。

2、難點:一次函數的應用。

3、關鍵:從數形結合分析思路入手,提升應用思維。

教學方法

采用“講練結合”的教學方法,讓學生逐步地熟悉一次函數的.應用。

教學過程

一、范例點擊,應用所學

【例5】小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數關系式,并畫出函數圖象。

y=

【例6】A城有肥料200噸,B城有肥料300噸,現要把這些肥料全部運往C、D兩鄉。從A城往C、D兩鄉運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉運肥料的費用分別為每噸15元和24元,現C鄉需要肥料240噸,D鄉需要肥料260噸,怎樣調運總運費最少?

解:設總運費為y元,A城往運C鄉的肥料量為x噸,則運往D鄉的肥料量為(200—x)噸。B城運往C、D鄉的肥料量分別為(240—x)噸與(60+x)噸。y與x的關系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉0噸,運往D鄉200噸;從B城運往C鄉240噸,運往D鄉60噸,此時總運費最少,總運費最小值為10040元。

拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應怎樣調運?

二、隨堂練習,鞏固深化

課本P119練習。

三、課堂總結,發展潛能

由學生自我評價本節課的表現。

四、布置作業,專題突破

課本P120習題14.2第9,10,11題。

板書設計

1、一次函數的應用例:

初中數學優秀教案篇11

一、教學任務分析

1、教學目標定位

根據《數學課程標準》和素質教育的要求,結合學生的認知規律及心理特征而確定,即:七年級的學生對身邊有趣事物充滿好奇心,對一些有規律的問題有探求的欲望,有很強的表現欲,同時又具備了一定的歸納、總結表達的能力。因此,確定如下教學目標:

(1).知識技能目標

讓學生掌握多邊形的內角和的公式并熟練應用。

(2).過程和方法目標

讓學生經歷知識的形成過程,認識數學特征,獲得數學經驗,進一步發展學生的說理意識和簡單推理,合情推理能力。

(3).情感目標

激勵學生的學習熱情,調動他們的學習積極性,使他們有自信心,激發學生樂于合作交流意識和獨立思考的習慣。。

2、教學重、難點定位

教學重點是多邊形的內角和的得出和應用。

教學難點是探索和歸納多邊形內角和的過程。

二、教學內容分析

1、教材的地位與作用

本課選自人教版數學七年級下冊第七章第三節《多邊形的內角和》的第一課時。本節課作為第七章第三節,起著承上啟下的作用。在內容上,從三角形的內角和到多邊形的內角和,層層遞進,這樣編排易于激發學生的學習興趣,很適合學生的認知特點。

2、聯系及應用

本節課是以三角形的知識為基礎,仿照三角形建立多邊形的有關概念。因此

多邊形的邊、內角、內角和等等都可以同三角形類比。通過這節課的學習,可以培養學生探索與歸納能力,體會把復雜化為簡單,化未知為已知,從特殊到一般和轉化等重要的思想方法。而多邊形在工程技術和實用圖案等方面有許多的實際應用,下一節平面鑲嵌就要用到,讓學生接觸一些多邊形的實例,可以加深對它的概念以及性質的理解。

三、教學診斷分析

學生對三角形的知識都已經掌握。讓學生由三角形的內角和等于180°,是一個定值,猜想四邊形的內角和也是一個定值,這是學生很容易理解的地方。由幾個特殊的四邊形的`內角和出發,譬如長方形、正方形的內角和都等于360°,可知如果四邊形的內角和是一個定值,這個定值是360°。要得到四邊形的內角和等于360°這個結論最直接的方法就是用量角器來度量。讓學生動手探索實踐,在探索過程中發現問題"度量會有誤差"。發現問題后接著引導學生聯想對角線的作用,四邊形的一條對角線,把它分成了兩個三角形,應用三角形的內角和等于180°,就得到四邊形的內角和等于360°。讓學生從特殊四邊形的內角和聯想一般四邊形的內角和,并在思想上引導,學習將新問題化歸為已有結論的思想方法,這里學生都容易理解。課堂教學設計中,在探究五邊形,六邊形和七邊形的內角和時,讓學生動手實踐,設置探究活動二,為了讓學生拓寬思路,從不同的角度去思考這個問題,這個活動對學生的動手能力要求進一步提高了,學生對這個問題的理解稍微有些難度,但學生可根據自己本身的特點來加以補充和完善。在教學設計中,要求根據小組選擇的方法探索多邊形的內角和。首先,小組內各個成員對所選擇的方法要了解,能夠把掌握的知識運用到實踐中;再者,小組內各個成員需要分工協作,才能夠順利的把任務完成;最后,學生還需要把自己的思維從感性認識提升到理性認識的高度,這樣就培養了學生合情推理的意識。

四、教法特點及預期效果分析

本節課借鑒了美國教育家杜威的"在做中學"的理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"的思想,我確定如下教法和學法:

1、教學方法的設計

我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,學生之間的交流和互動,體現了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。

2、活動的開展

利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節課的內容。

3、現代教育技術的應用

我利用課件輔助教學,適時呈現問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。探究活動在本次教學設計中占了非常大的比例,探究活動一設置目的讓學生動手實踐,并把新知識與學過的三角形的相關知識聯系起來;探究活動二設置目的讓學生拓寬思路,為放開書本的束縛打下基礎;培養學生動手操作的能力和合情推理的意識。通過師生共同活動,訓練學生的發散性思維,培養學生的創新精神;使學生懂得數學內容普遍存在相互聯系,相互轉化的特點。練習活動的設計,目的一檢查學生的掌握知識的情況,并促進學生積極思考;目的二凸現小組合作的特點,并促進學生情感交流。

以上是我對《多邊形的內角和》的教學設計說明。

初中數學優秀教案篇12

教學目標:

1、 在現實情境中理解線段、射線、直線等簡單圖形(知識目標)

2、 會說出線段、射線、直線的特征;會用字母表示線段、射線、直線(能力目標)

3、 通過操作活動,了解兩點確定一條直線等事實,積累操作活動的經驗,培養學生的興趣、愛好,感受圖形世界的豐富多彩。(情感態度目標)

教學難點:

了解“兩點確定一條直線”等事實,并應用它解決一些實際問題

教 具:

多媒體、棉線、三角板

教學過程:

情景創設:

觀察電腦展示圖,使學生感受圖形世界的豐富多彩,激發學習興趣。

如何來描述我們所看到的現象?

教學過程:

1、 一段拉直的棉線可近似地看作線段

師生畫線段

演示投影片1:

①將線段向一個方向無限延長,就形成了______

學生畫射線

②將線段向兩個方向無限延長就形成了_______

學生畫直線

2、 討論小組交流:

① 生活中,還有哪些物體可以近似地看作線段、射線、直線?

(強調近似兩個字,注意引導學生線段、射線、直線是從生活上抽象出來的)

②線段、射線、直線,有哪些不同之處, 有哪些相同之處?

(鼓勵學生用自己的語言描述它們各自的特點)

3、 問題1:圖中有幾條線段?哪幾條?

“要說清楚哪幾條,必須先給線段起名字!”從而引出線段的記法。

點的記法: 用一個大寫英文字母

線段的記法:

①用兩個端點的字母來表示

②用一個小寫英文字母表示

自己想辦法表示射線,讓學生充分討論,并比較如何表示合理

射線的記法:

用端點及射線上一點來表示,注意端點的.字母寫在前面

直線的記法:

① 用直線上兩個點來表示

② 用一個小寫字母來表示

強調大寫字母與小寫字母來表示它們時的區別

(我們知道他們是無限延長的,我們為了方便研究約定成俗的用上面的方法來表示它們。)

練習1:讀句畫圖(如圖示)

(1) 連BC、AD

(2) 畫射線AD

(3) 畫直線AB、CD相交于E

(4) 延長線段BC,反向延長線段DA相交與F

(5) 連結AC、BD相交于O

練習2:右圖中,有哪幾條線段、射線、直線

4、 問題2 請過一點A畫直線,可以畫幾條?過兩點A、B呢?

學生通過畫圖,得出結論:過一點可以畫無數條直線

經過兩點有且只有一條直線

問題3 如果你想將一硬紙條固定在硬紙板上,至少需要幾根圖釘?

為什么?(學生通過操作,回答)

小組討論交流:

你還能舉出一個能反映“經過兩點有且只有一條直線”的實例嗎?

適當引導:栽樹時只要確定兩個樹坑的位置,就能確定同一行的樹坑所在的直線。建筑工人在砌墻時,經常在兩個墻角分別立一根標志桿,在兩根標志桿之間拉一根繩,沿這根繩就可以砌出直的墻來。

5、 小結:

① 學生回憶今天這節課學過的內容

進一步清晰線段、射線、直線的概念

② 強調線段、射線、直線表示方法的掌握

6、 作業:

①閱讀“讀一讀” P121

②習題4的1、2、3、4作為思考題

初中數學優秀教案篇13

一、教學目標

1、了解二次根式的意義;

2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

3、掌握二次根式的性質和,并能靈活應用;

4、通過二次根式的計算培養學生的邏輯思維能力;

5、通過二次根式性質和的介紹滲透對稱性、規律性的`數學美。

二、教學重點和難點

重點:

(1)二次根的意義;

(2)二次根式中字母的取值范圍。

難點:確定二次根式中字母的取值范圍。

三、教學方法

啟發式、講練結合。

四、教學過程

(一)復習提問

1、什么叫平方根、算術平方根?

2、說出下列各式的意義,并計算

(二)引入新課

新課:二次根式

定義:式子叫做二次根式。

對于請同學們討論論應注意的問題,引導學生總結:

(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?

若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

(2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次

根式指的是某種式子的“外在形態”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據二次根式定義,由學生分析、回答。

例1當a為實數時,下列各式中哪些是二次根式?

例2 x是怎樣的實數時,式子在實數范圍有意義?

解:略。

說明:這個問題實質上是在x是什么數時,x—3是非負數,式子有意義。

例3當字母取何值時,下列各式為二次根式:

分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式。

解:

(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時,是二次根式。

(2)—3x≥0,x≤0,即x≤0時,是二次根式。

(3),且x≠0,∴x>0,當x>0時,是二次根式。

(4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。

例4下列各式是二次根式,求式子中的字母所滿足的條件:

分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零。

解:

(1)由2a+3≥0,得。

(2)由,得3a—1>0,解得。

(3)由于x取任何實數時都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數。

(4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

初中數學優秀教案篇14

知識技能

會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。

數學思考

1.經歷探索具體問題中的數量關系過程,體會一元一次方程是刻畫實際問題的有效數學模型。進一步發展符號意識。

2.通過一元一次方程的學習,體會方程模型思想和化歸思想。

解決問題

能在具體情境中從數學角度和方法解決問題,發展應用意識。

經歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。

情感態度

經歷觀察、實驗計算、交流等活動,激發求知欲,體驗探究發現的快樂。

教學重點

建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。

教學難點

分析實際問題中的相等關系,列出方程。

教學過程

活動一 知識回顧

解下列方程:

1. 3x+1=4

2. x-2=3

3. 2x+0.5x=-10

4. 3x-7x=2

提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?

教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。

出示問題(幻燈片)。

學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。

教師提問:(略)

教師追問:變形的依據是什么?

學生獨立思考、回答交流。

本次活動中教師關注:

(1)學生能否準確理解運用等式性質和合并同列項求解方程。

(2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。

通過這個環節,引導學生回顧利用等式性質和合并同類項對方程進行變形,再現等式兩邊同時加上(或減去)同一個數、兩邊同時乘以(除以,不為0)同一個數、合并同類項等運算,為繼續學習做好鋪墊。

活動二 問題探究

問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本。這個班有多少學生?

教師:出示問題(投影片)

提問:在這個問題中,你知道了什么?根據現有經驗你打算怎么做?

(學生嘗試提問)

學生:讀題,審題,獨立思考,討論交流。

1.找出問題中的'已知數和已知條件。(獨立回答)

2.設未知數:設這個班有x名學生。

3.列代數式:x參與運算,探索運算關系,表示相關量。(討論、回答、交流)

4.找相等關系:

這批書的總數是一個定值,表示它的兩個等式相等。(學生回答,教師追問)

5.列方程:3x+20=4x-25(1)

總結提問:通過列方程解決實際問題分析時,要經歷那些步驟?書寫時呢?

教師提問1:這個方程與我們前面解過的方程有什么不同?

學生討論后發現:方程的兩邊都有含x的項(3x與4x)和不含字母的常數項(20與-25)。

教師提問2:怎樣才能使它向x=a的形式轉化呢?

學生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數項,等號兩邊同減去20。

3x-4x=-25-20(2)

教師提問3:以上變形依據是什么?

學生回答:等式的性質1。

歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。

師生共同完成解答過程。

設問4:以上解方程中“移項”起了什么作用?

學生討論、回答,師生共同整理:

通過移項,含未知數的項與常數項分別位于方程左右兩邊,使方程更接近于x=a的形式。

教師提問5:解這個方程,我們經歷了那些步驟?列方程時找了怎樣的相等關系?

學生思考回答。

教師關注:

(1)學生對列方程解決實際問題的一般步驟:設未知數,列代數式,列方程,是否清楚?

(2)在參與觀察、比較、嘗試、交流等數學活動中,體驗探究發現成功的快樂。

活動三 解法運用

例2解方程

3x+7=32-2x

教師:出示問題

提問:解這個方程時,第一步我們先干什么?

學生講解,獨立完成,板演。

提問:“移項”是注意什么?

學生:變號。

教師關注:學生“移項”時是否能夠注意變號。

通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規范解題步驟。

活動四 鞏固提高

1.第91頁練習(1)(2)

2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?

3.小明步行由A地去B地,若每小時走6千米,則比規定時間遲到1小時;若每小時走8千米,則比規定時間早到0.5小時。求A、B兩地之間的距離。

教師按順序出示問題。

學生獨立完成,用實物投影展示部分學而生練習。

教師關注:

1.學生在計算中可能出現的錯誤。

2.x系數為分數時,可用乘的辦法,化系數為1。

3.用實物投影展示學困生的完成情況,進行評價、鼓勵。

鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學生對解方程步驟的掌握情況和可能出現的計算錯誤。

2、3題的重點是在新情境中引導學生利用已有經驗解決實際問題,達到鞏固提高的目的。

活動五

提問1:今天我們學習了解方程的那種變形?它有什么作用、應注意什么?

提問2:本節課重點利用了什么相等關系,來列的方程?

教師組織學生就本節課所學知識進行小結。

學生進行總結歸納、回答交流,相互完善補充。

教師關注:學生能否提煉出本節課的重點內容,如果不能,教師則提出具體問題,引導學生思考、交流。

引導學生對本節所學知識進行歸納、總結和梳理,以便于學生掌握和運用。

布置作業:

第93頁第3題

初中數學優秀教案篇15

一、課題

27.3 過三點的圓

二、教學目標

1.經歷過一點、兩點和不在同一直線上的三點作圓的過程。

2.. 知道過不在同一條直線上的三個點畫圓的方法

3.了解三角形的外接圓和外心。

三、教學重點和難點

重點:經歷過一點、兩點和不在同一直線上的三點作圓的過程。

難點:知道過不在同一條直線上的三個點畫圓的方法。

四、教學手段

現代課堂教學手段

五、教學方法

學生自己探索

六、教學過程設計

(一)、新授

1.過已知一個點A畫圓,并考慮這樣的圓有多少個?

2.過已知兩個點A、B畫圓,并考慮這樣的圓有多少個?

3.過已知三個點A、B、C畫圓,并考慮這樣的圓有多少個?

讓學生以小組為單位,進行探索、思考、交流后,小組選派代表向全班學生展示本小組的探索成果,在展示后,接受其他學生的質疑。

得出結論:過一點可以畫無數個圓;過兩點也可以畫無數個圓;這些圓的圓心都在連結這兩點的線段的垂直平分線上;經過不在同一直線上的三個點可以畫一個圓,并且這樣的圓只有一個。

不在同一直線上的三個點確定一個圓。

給出三角形外接圓的概念:經過三角形三個頂點可以作一個圓,這個圓叫作三角形的外接圓,外接圓的圓心叫做三角形的外心。

例:畫已知三角形的外接圓。

讓學生探索課本第15頁習題1。

一起探究

八年級(一)班的學生為老區的小朋友捐款500元,準備為他們購買甲、乙 兩種圖書共12套。已知甲種圖書每套45元,乙種圖書每套40元。這些錢最多能買甲種圖書多少套?

分析:帶領學生完成課本第13頁的表格,并完成2、3 問題,使學生清楚通過列表可以更好的分析題目,對于情景較為復雜的問題情景可采用這種分析方法解題。另外通過此題,使學生認識到:在應不等式解決實際問題時,當求出不等式的解集后,還要根據問題的.實際意義確定問題的解。

(二)、小結

七、練習設計

P15習題2、3

八、教學后記

后備練習:

1. 已知一個三角形的三邊長分別是 ,則這個三角形的外接圓面積等于 。

2. 如圖,有A, ,C三個居民小區的位置成三角形,現決定在三個小區之間修建一個購物超市,使超市到三個小區的距離相等,則超市應建在()

A.在AC,BC兩邊高線的交點處

B.在AC,BC兩邊中線的交點處

C.在AC,BC兩邊垂直平分線的交點處

D.在A,B兩內角平分線的交點處

144925
領取福利

微信掃碼領取福利

微信掃碼分享