国产一区久久精品_性xxxxx_国产精品久久久久无码av_免费观看视频www

好多范文網 haoduofanwen.com,好用的范文大全!

高中數學正弦定理教案

網友投稿 分享 時間: 加入收藏 我要投稿 點贊

有關高中數學正弦定理教案n篇

教案明確了教學目標和要求,有助于教師更好地引導學生學習,確保教學活動達到預期的效果。以下是小編為大家收集的高中數學正弦定理教案,歡迎閱讀,希望大家能夠喜歡。

高中數學正弦定理教案

高中數學正弦定理教案【篇1】

教學目標

進一步熟悉正、余弦定理內容,能熟練運用余弦定理、正弦定理解答有關問題,如判斷三角形的形狀,證明三角形中的三角恒等式.

教學重難點

教學重點:熟練運用定理.

教學難點:應用正、余弦定理進行邊角關系的相互轉化.

教學過程

一、復習準備:

1. 寫出正弦定理、余弦定理及推論等公式.

2. 討論各公式所求解的三角形類型.

二、講授新課:

1. 教學三角形的解的討論:

① 出示例1:在△ABC中,已知下列條件,解三角形.

分兩組練習→ 討論:解的個數情況為何會發生變化?

②用如下圖示分析解的情況. (A為銳角時)

② 練習:在△ABC中,已知下列條件,判斷三角形的解的情況.

2. 教學正弦定理與余弦定理的活用:

① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦.

分析:已知條件可以如何轉化?→ 引入參數k,設三邊后利用余弦定理求角.

② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型.

分析:由三角形的什么知識可以判別? → 求最大角余弦,由符號進行判斷

③ 出示例4:已知△ABC中,,試判斷△ABC的形狀.

分析:如何將邊角關系中的邊化為角? →再思考:又如何將角化為邊?

3. 小結:三角形解的情況的討論;判斷三角形類型;邊角關系如何互化.

三、鞏固練習:

3. 作業:教材P11 B組1、2題.

高中數學正弦定理教案【篇2】

(一)教材分析

(1)地位和重要性:正、余弦定理是學生學習了平面向量之后要掌握的兩個重要定理,運用這兩個定理可以初步解決幾何及工業測量等實際問題,是解決有關三角形問題的有力工具。

(2)重點、難點。

重點:正余弦定理的證明和應用

難點:利用向量知識證明定理

(二)教學目標

(1)知識目標:

①要學生掌握正余弦定理的推導過程和內容;

②能夠運用正余弦定理解三角形;

③了解向量知識的應用。

(2)能力目標:提高學生分析問題、解決問題的能力。

(3)情感目標:使學生領悟到數學來源于實踐而又作用于實踐,培養學生的.學習數學的興趣。

(三)教學過程

教師的主要作用是調控課堂,適時引導,引導學生自主發現,自主探究。使學生的綜合能力得到提高。

教學過程分如下幾個環節:

教學過程課堂引入

1、定理推導

2、證明定理

3、總結定理

4、歸納小結

5、反饋練習

6、課堂總結、布置作業

具體教學過程如下:

(1)課堂引入:

正余弦定理廣泛應用于生產生活的各個領域,如航海,測量天體運行,那正余弦定理解決實際問題的一般步驟是什么呢?

(2)定理的推導。

首先提出問題:RtΔABC中可建立哪些邊角關系?

目的:首先從學生熟悉的直角三角形中引導學生自己發現定理內容,猜想,再完成一般性的證明,具體環節如下:

①引導學生從SinA、SinB的表達式中發現聯系。

②繼續引導學生觀察特點,有A邊A角,B邊B角;

③接著引導:能用C邊C角表示嗎?

④而后鼓勵猜想:在直角三角形中成立了,對任意三角形成立嗎?

發現問題比解決問題更重要,我便是讓學生體驗了發現的過程,從學生熟悉的知識內容入手,觀察發現,然后產生猜想,進而完成一般性證明。

這個過程采用了不斷創設問題,啟發誘導的教學方法,引導學生自主發現和探究。

第二步證明定理:

①用向量方法證明定理:學生不易想到,設計如下:

問題:如何出現三角函數做數量積欲轉化到正弦利用誘導公式做直角難點突破

實踐:師生共同完成銳角三角形中定理證明

獨立:學生獨立完成在鈍角三角形中的證明

總結定理:師生共同對定理進行總結,再認識。

在定理的推導過程中,我注重“重過程、重體驗”培養了學生的創新意識和實踐能力,教育學生獨立嚴謹科學的求學態度,使情感目標、能力目標得以實現。

在定理總結之后,教師布置思考題:定理還有沒有其他證法?

通過這樣的思考題,發散了學生思維,使學生的思維不僅僅禁錮在教師的啟發誘導之下,符合素質教育的要求。

(3)例題設置。

例1△ABC中,已知c=10,A=45°,C=30°,求b.

(學生口答、教師板書)

設計意圖:①加深對定理的認識;②提高解決實際問題的能力

例2△ABC中,a=20,b=28,A=40°,求B和C.

例3 △ABC中,a=60,b=50,A=38°,求B和C.其中①兩組解,②一組解

例3同時給出兩道題,首先留給學生一定的思考時間,同時讓兩學生板演,以便兩題形成對照、比較。

可能出現的情況:兩個學生都做對,則繼續為學生提供展示的空間,讓學生來分析看似一樣的條件,為何①二解②一解情況,如果第二同學也做出兩組解,則讓其他學生積極參與評判,發現問題,找出對策。

設計意圖:

①增強學生對定理靈活運用的能力

②提高分析問題解決問題的能力

③激發學生的參與意識,培養學生合作交流、競爭的意識,使學生在相互影響中共同進步。

(四)歸納小結。

借助多媒體動態演示:圖表

使學生對于已知兩邊和其中一邊對角,三角形解的情況有一個清晰直觀的認識。之后讓學生對題型進行歸納小結。

這樣的歸納總結是通過學生實踐,在新舊知識比照之后形成的,避免了學生的被動學習,抽象記憶,讓學生形成對自我的認同和對社會的責任感。實現本節課的情感目標。

(五)反饋練習:

練習①△ABC中,已知a=60,b=48,A=36°

②△ABC中,已知a=19,b=29,A=4°

③△ABC中,已知a=60,b=48,A=92°

判斷解的情況。

通過學生形成性的練習,鞏固了對定理的認識和應用,也便于教師掌握學情,以為教學的進行作出合理安排。

高中數學正弦定理教案【篇3】

尊敬的各位專家、評委:

大家好!

一、教材分析

“解三角形”既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數學問題”的建模過程中,體驗 “觀察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和“用數學”的意識。

二、學情分析

我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對“一些重要的數學思想和數學方法”的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。

三、教學目標

1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。

過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。

情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立“數學與我有關,數學是有用的,我要用數學,我能用數學”的理念。

2、教學重點、難點

教學重點:正弦定理的發現與證明;正弦定理的簡單應用。

教學難點:正弦定理證明及應用。

四、教學方法與手段

為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。

五、教學過程

為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:

(一)創設情景,揭示課題

問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?

1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?

問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通 是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)

[設計說明]引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。

(二)特殊入手,發現規律

問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?

引導啟發學生發現特殊情形下的正弦定理

(三)類比歸納,嚴格證明

問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?

[設計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。

問題5:好根據剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發引導學生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務必啟發學生用向量法完成證明。)

[設計說明] 放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數學的實踐中去感悟和提高數學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的.同學的先進性,鍛煉了上黑板同學的解題過程的書寫規范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。

問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)

教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾—威發[940-998]首先發現與證明的。中亞細亞人阿爾比魯尼[973-1048]給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說在10以前,人們就發現了這個充滿著數學美的結論,不能不說也是人類數學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數學家的老師了。當然,老師的希望能否變成現實,就要看大家的了。

[設計說明] 通過本段內容的講解,滲透一些數學史的內容,對學生不僅有數學美得熏陶,更能激發學生學習科學文化知識的熱情。

(四)強化理解,簡單應用

下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。

[設計說明] 讓學生看看書,放慢節奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數量,同時培養學生養成自覺看書的好習慣。

我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:

問題7:(教材例題1)⊿ABC中,已知A=30o,B=75o,a=40cm,解三角形。

(本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據學生實踐中發現的問題給予必要的講評)

[設計說明] 充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創造條件。

強化練習

讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。

問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30o,解三角形。

高中數學正弦定理教案【篇4】

一、說教材分析

”解三角形“既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課”正弦定理“,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從”實際問題“抽象成”數學問題“的建模過程中,體驗 ”觀察――猜想――證明――應用“這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和”用數學“的意識。

二、說學情分析

我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對”一些重要的數學思想和數學方法“的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。

三、說教學目標

1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。

過程與方法:學生參與解題方案的探索,嘗試應用觀察――猜想――證明――應用”等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。

情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立“數學與我有關,數學是有用的,我要用數學,我能用數學”的理念。

2、教學重點、難點

教學重點:正弦定理的發現與證明;正弦定理的簡單應用。

教學難點:正弦定理證明及應用。

四、說教學方法與手段

為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。

五、說教學過程

為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:

(一)創設情景,揭示課題

問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?

1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?

問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通 是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)

引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。

(二)特殊入手,發現規律

問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在RtSABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?

引導啟發學生發現特殊情形下的正弦定理

(三)類比歸納,嚴格證明

問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的RtSABC不小心寫成了銳角SABC,其它沒有變,你說這個結論還成立嗎?

此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。

問題5:好根據剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角SABC改為角鈍角SABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發引導學生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務必啟發學生用向量法完成證明。)

放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數學的實踐中去感悟和提高數學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規范性,同時,也讓從無從下手的'同學有個參考,不至于閑呆著浪費時間。

問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)

教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發z940―998{首先發現與證明的。中亞細亞人阿爾比魯尼z973―1048{給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說在10以前,人們就發現了這個充滿著數學美的結論,不能不說也是人類數學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數學家的老師了。當然,老師的希望能否變成現實,就要看大家的了。

通過本段內容的講解,滲透一些數學史的內容,對學生不僅有數學美得熏陶,更能激發學生學習科學文化知識的熱情。

(四)強化理解,簡單應用

下面請大家看我們的教材2―3頁到例題1上邊,并自學解三角形定義。

讓學生看看書,放慢節奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數量,同時培養學生養成自覺看書的好習慣。

我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:

問題7:(教材例題1)SABC中,已知A=30?,B=75?,a=40cm,解三角形。

(本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據學生實踐中發現的問題給予必要的講評)

充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創造條件。

強化練習

讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。

問題8:(教材例題2)在SABC中a=20cm,b=28cm,A=30?,解三角形。

例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發現教材8頁得內容:《解三角形的進一步討論》

(五)小結歸納,深化拓展

1、正弦定理

2、正弦定理的證明方法

3、正弦定理的應用

4、涉及的數學思想和方法。

師生共同總結本節課的收獲的同時,引導學生學會自己總結,讓學生進一步回顧和體會知識的形成、發展、完善的過程。

(六)布置作業,鞏固提高

1、教材10頁習題1、1A組第1題。

2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。

證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC

對不同水平的學生設計不同梯度的作業,尊重學生的個性差異,有利于因材施教的教學原則的貫徹。

(七)板書設計:

(略)

高中數學正弦定理教案【篇5】

1正弦定理 2證明方法: 3 利用正弦定理能夠解決兩類問題:

(1)平面幾何法 (1)已知兩角和一邊

(2)向量法 (2)已知兩邊和其中一邊的對角

例題

板書設計可以讓學生一目了然本節課所學的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。

高中數學正弦定理教案【篇6】

大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。

一、教材分析

本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的'聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。

根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

認知目標:通過創設問題情境,引導學生發現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。

能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,激發學生學習的興趣。

教學重點:正弦定理的內容,正弦定理的證明及基本應用。 教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數。

二、教法

根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

三、學法

指導學生掌握“觀察――猜想――證明――應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

四、教學過程

(一)創設情境(3分鐘)

“興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

(二)猜想―推理―證明(15分鐘)

激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。 提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)

在三角形中,角與所對的邊滿足關系

注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。

2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

(三)總結--應用(3分鐘)

1.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

2.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

(四)講解例題(8分鐘)

1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中

一邊的對角時解三角形的各種情形。完了把時間交給學生。

(五)課堂練習(8分鐘)

1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

學生板演,老師巡視,及時發現問題,并解答。

(六)小結反思(3分鐘)

1.它表述了三角形的邊與對角的正弦值的關系。

2.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。

3.會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

高中數學正弦定理教案【篇7】

正弦定理證明

正弦定理證明

1.三角形的正弦定理證明:

步驟1.

在銳角△ABC中,設三邊為a,b,c。作CH⊥AB垂足為點H

CH=a?sinB

CH=b?sinA

∴a?sinB=b?sinA

得到

a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步驟2.

證明a/sinA=b/sinB=c/sinC=2R:

如圖,任意三角形ABC,作ABC的外接圓O.

作直徑BD交⊙O于D.

連接DA.

因為直徑所對的圓周角是直角,所以∠DAB=90度

因為同弧所對的圓周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

a/SinA=BC/SinD=BD=2R

類似可證其余兩個等式。

2.三角形的余弦定理證明:

平面幾何證法:

在任意△ABC中

做AD⊥BC.

∠C所對的邊為c,∠B所對的邊為b,∠A所對的邊為a

則有BD=cosB__c,AD=sinB__c,DC=BC-BD=a-cosB__c

根據勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB__c)^2+(a-cosB__c)^2

b^2=sin^2B__c^2+a^2+cos^2B__c^2-2ac__cosB

b^2=(sin^2B+cos^2B)__c^2-2ac__cosB+a^2

b^2=c^2+a^2-2ac__cosB

cosB=(c^2+a^2-b^2)/2ac

3

在△ABC中,AB=c、BC=a、CA=b

則c^2=a^2+b^2-2ab__cosC

a^2=b^2+c^2-2bc__cosA

b^2=a^2+c^2-2ac__cosB

下面在銳角△中證明第一個等式,在鈍角△中證明以此類推。

過A作AD⊥BC于D,則BD+CD=a

由勾股定理得:

c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2

所以c^2=(AD)^2-(CD)^2+b^2

=(a-CD)^2-(CD)^2+b^2

=a^2-2a__CD +(CD)^2-(CD)^2+b^2

=a^2+b^2-2a__CD

因為cosC=CD/b

所以CD=b__cosC

所以c^2=a^2+b^2-2ab__cosC

題目中^2表示平方。

2

談正、余弦定理的多種證法

聊城二中 魏清泉

正、余弦定理是解三角形強有力的工具,關于這兩個定理有好幾種不同的證明方法.人教A版教材《數學》(必修5)是用向量的數量積給出證明的,如是在證明正弦定理時用到作輔助單位向量并對向量的等式作同一向量的數量積,這種構思方法過于獨特,不易被初學者接受.本文試圖通過運用多種方法證明正、余弦定理從而進一步理解正、余弦定理,進一步體會向量的巧妙應用和數學中“數”與“形”的完美結合.

定理:在△ABC中,AB=c,AC=b,BC=a,則

(1)(正弦定理) = = ;

(2)(余弦定理)

c2=a2+b2-2abcos C,

b2=a2+c2-2accos B,

a2=b2+c2-2bccos A.

一、正弦定理的證明

證法一:如圖1,設AD、BE、CF分別是△ABC的三條高。則有

AD=bsin∠BCA,

BE=csin∠CAB,

CF=asin∠ABC。

所以S△ABC=abcsin∠BCA

=bcsin∠CAB

=casin∠ABC.

證法二:如圖1,設AD、BE、CF分別是△ABC的3條高。則有

AD=bsin∠BCA=csin∠ABC,

BE=asin∠BCA=csin∠CAB。

證法三:如圖2,設CD=2r是△ABC的外接圓

的直徑,則∠DAC=90°,∠ABC=∠ADC。

證法四:如圖3,設單位向量j與向量AC垂直。

因為AB=AC+CB,

所以jAB=j(AC+CB)=jAC+jCB.

因為jAC=0,

jCB=| j ||CB|cos(90°-∠C)=asinC,

jAB=| j ||AB|cos(90°-∠A)=csinA .

二、余弦定理的.證明

法一:在△ABC中,已知 ,求c。

過A作 ,

在Rt 中, ,

法二:

,即:

法三:

先證明如下等式:

證明:

故⑴式成立,再由正弦定理變形,得

結合⑴、有

即 .

同理可證

.

三、正余弦定理的統一證明

法一:證明:建立如下圖所示的直角坐標系,則A=(0,0)、B=(c,0),又由任意角三角函數的定義可得:C=(bcos A,bsin A),以AB、BC為鄰邊作平行四邊形ABCC′,則∠BAC′=π-∠B,

∴C′(acos(π-B),asin(π-B))=C′(-acos B,asin B).

根據向量的運算:

=(-acos B,asin B),

= - =(bcos A-c,bsin A),

(1)由 = :得

asin B=bsin A,即

= .

同理可得: = .

∴ = = .

(2)由 =(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A,

又| |=a,

∴a2=b2+c2-2bccos A.

同理:

c2=a2+b2-2abcos C;

b2=a2+c2-2accos B.

法二:如圖5,

,設 軸、軸方向上的單位向量分別為 、,將上式的兩邊分別與 、作數量積,可知

將(1)式改寫為

化簡得b2-a2-c2=-2accos B.

即b2=a2+c2-2accos B.(4)

高中數學正弦定理教案【篇8】

大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。

一、教材分析

本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。

根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

認知目標:通過創設問題情境,引導學生發現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。

能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,激發學生學習的興趣。

教學重點:正弦定理的內容,正弦定理的證明及基本應用。 教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數。

二、教法

根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

三、學法

指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

四、教學過程

(一)創設情境(3分鐘)

“興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

(二)猜想—推理—證明(15分鐘)

激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。 提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)

在三角形中,角與所對的邊滿足關系

注意:1、強調將猜想轉化為定理,需要嚴格的理論證明。

2、鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

3、提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

(三)總結——應用(3分鐘)

1、正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

2、運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

(四)講解例題(8分鐘)

1、例1。 在△ABC中,已知A=32°,B=81、8°,a=42、9cm。解三角形。

例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

2、例2。 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。

(五)課堂練習(8分鐘)

1、在△ABC中,已知下列條件,解三角形。 (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

2、在△ABC中,已知下列條件,解三角形。 (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

學生板演,老師巡視,及時發現問題,并解答。

(六)小結反思(3分鐘)

1、它表述了三角形的邊與對角的正弦值的關系。

2、定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。

3、會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

五、教學反思

從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。

高中數學正弦定理教案【篇9】

《正弦定理》教案

一、教學內容分析

本節課是高一數學第五章《三角比》第三單元中正弦定理的第一課時,它既是初中“解直角三角形”內容的直接延拓,也是坐標法等知識在三角形中的具體運用,是生產、生活實際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關系,它與后面的余弦定理都是解三角形的重要工具。

本節課其主要任務是引入證明正弦定理及正弦定理的基本應用,在課型上屬于“定理教學課”。因此,做好“正弦定理”的教學,不僅能復習鞏固舊知識,使學生掌握新的有用的知識,體會聯系、發展等辯證觀點,學生通過對定理證明的探究和討論,體驗到數學發現和創造的歷程,進而培養學生提出問題、解決問題等研究性學習的能力。

二、學情分析

對高一的學生來說,一方面已經學習了平面幾何,解直角三角形,任意角的三角比等知識,具有一定觀察分析、解決問題的能力;但另一方面對新舊知識間的聯系、理解、應用往往會出現思維障礙,思維靈活性、深刻性受到制約。根據以上特點,教師恰當引導,提高學生學習主動性,注意前后知識間的聯系,引導學生直接參與分析問題、解決問題。

三、設計思想:

培養學生學會學習、學會探究是全面發展學生能力的重要方面,也是高中新課程改革的主要任務。如何培養學生學會學習、學會探究呢?建構主義認為:“知識不是被動吸收的,而是由認知主體主動建構的。”這個觀點從教學的角度來理解就是:知識不僅是通過教師傳授得到的,更重要的是學生在一定的情境中,運用已有的學習經驗,并通過與他人(在教師指導和學習伙伴的幫助下)協作,主動建構而獲得的,建構主義教學模式強調以學生為中心,視學生為認知的主體,教師只對學生的意義建構起幫助和促進作用。本節“正弦定理”的教學,將遵循這個原則而進行設計。

四、教學目標:

1、在創設的問題情境中,讓學生從已有的幾何知識和處理幾何圖形的常用方法出發,探索和證明正弦定理,體驗坐標法將幾何問題轉化為代數問題的優越性,感受數學論證的嚴謹性。

2、理解三角形面積公式,能運用正弦定理解決三角形的兩類基本問題,并初步認識用正弦定理解三角形時,會有一解、兩解、無解三種情況。

3、通過對實際問題的探索,培養學生的數學應用意識,激發學生學習的興趣,讓學生感受到數學知識既來源于生活,又服務與生活。

五、教學重點與難點

教學重點:正弦定理的探索與證明;正弦定理的基本應用。

教學難點:正弦定理的探索與證明。

突破難點的手段:抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給于適當的提示和指導。

六、復習引入:

1、在任意三角形行中有大邊對大角,小邊對小角的邊角關系?是否可以把邊、角關系準確量化?

2、在ABC中,角A、B、C的正弦對邊分別是a,b,c,你能發現它們之間有什么關系嗎?

結論:

證明:(向量法)過A作單位向量j垂直于AC,由AC+CB=AB邊同乘以單位向量。

正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等。

七、教學反思

本節是“正弦定理”定理的第一節,在備課中有兩個問題需要精心設計。一個是問題的引入,一個是定理的證明。通過兩個實際問題引入,讓學生體會為什么要學習這節課,從學生的“最近發展區”入手進行設計,尋求解決問題的方法。具體的'思路就是從解決課本的實際問題入手展開,將問題一般化導出三角形中的邊角關系——正弦定理。因此,做好“正弦定理”的教學既能復習鞏固舊知識,也能讓學生掌握新的有用的知識,有效提高學生解決問題的能力。

1、在教學過程中,我注重引導學生的思維發生,發展,讓學生體會數學問題是如何解決的,給學生解決問題的一般思路。從學生熟悉的直角三角形邊角關系,把銳角三角形和鈍角三角形的問題也轉化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數形結合思想等思想。

2、在教學中我恰當地利用多媒體技術,是突破教學難點的一個重要手段。利用《幾何畫板》探究比值的值,由動到靜,取得了很好的效果,加深了學生的印象。

3、由于設計的內容比較的多,教學時間的超時,這說明我自己對學生情況的把握不夠準確到位,致使教學過程中時間的分配不夠適當,教學語言不夠精簡,今后我一定避免此類問題,爭取更大的進步。

高中數學正弦定理教案【篇10】

尊敬的各位專家、評委:

大家好!

我是____縣____中學數學教師__,我今天說課的題目是:人教A版普通高中課程標準實驗教科書 數學必修5第一章第一節的第一課時《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個方面說明我的設計和構思。

一、教材分析

“解三角形”既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數學問題”的建模過程中,體驗 “觀察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和“用數學”的意識。

二、學情分析

我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對“一些重要的數學思想和數學方法”的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。

三、教學目標

1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。

過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用“等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。

情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立”數學與我有關,數學是有用的,我要用數學,我能用數學“的理念。

2、教學重點、難點

教學重點:正弦定理的發現與證明;正弦定理的簡單應用。

教學難點:正弦定理證明及應用。

四、教學方法與手段

為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用”問題教學法“,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。

五、教學過程

為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:

(一)創設情景,揭示課題

問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?

1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?

問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通 是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)

引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。

(二)特殊入手,發現規律

問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?

引導啟發學生發現特殊情形下的正弦定理

(三)類比歸納,嚴格證明

問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?

此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。

問題5:好根據剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發引導學生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務必啟發學生用向量法完成證明。)

放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數學的實踐中去感悟和提高數學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。

問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)

教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發﹝940—998﹞首先發現與證明的。中亞細亞人阿爾比魯尼﹝973—1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說在10以前,人們就發現了這個充滿著數學美的結論,不能不說也是人類數學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數學家的.老師了。當然,老師的希望能否變成現實,就要看大家的了。

通過本段內容的講解,滲透一些數學史的內容,對學生不僅有數學美得熏陶,更能激發學生學習科學文化知識的熱情。

(四)強化理解,簡單應用

下面請大家看我們的教材2—3頁到例題1上邊,并自學解三角形定義。

讓學生看看書,放慢節奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數量,同時培養學生養成自覺看書的好習慣。

我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:

問題7:(教材例題1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。

(本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據學生實踐中發現的問題給予必要的講評)

充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創造條件。

強化練習

讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。

問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。

例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發現教材8頁得內容:《解三角形的進一步討論》

(五)小結歸納,深化拓展

1、正弦定理

2、正弦定理的證明方法

3、正弦定理的應用

4、涉及的數學思想和方法。

師生共同總結本節課的收獲的同時,引導學生學會自己總結,讓學生進一步回顧和體會知識的形成、發展、完善的過程。

(六)布置作業,鞏固提高

1、教材10頁習題1。1A組第1題。

2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。

證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC

對不同水平的學生設計不同梯度的作業,尊重學生的個性差異,有利于因材施教的教學原則的貫徹。

(七)板書設計:(略)

高中數學正弦定理教案【篇11】

一、教材分析

1、教材地位和作用

在初中,學生已經學習了三角形的邊和角的基本關系;同時在必修4,學生也學習了三角函數、平面向量等內容。這些為學生學習正弦定理提供了堅實的基礎。正弦定理是初中解直角三角形的延伸,是揭示三角形邊、角之間數量關系的重要公式,本節內容同時又是學生學習解三角形,幾何計算等后續知識的基礎,而且在物理學等其它學科、工業生產以及日常生活等常常涉及解三角形的問題。依據教材的上述地位和作用,我確定如下教學目標和重難點

2、教學目標

(1)知識目標:

①引導學生發現正弦定理的內容,探索證明正弦定理的方法;

②簡單運用正弦定理解三角形、初步解決某些與測量和幾何計算有關的實際問題。

(2)能力目標:

①通過對直角三角形邊角數量關系的研究,發現正弦定理,體驗用特殊到一般的思想方法發現數學規律的過程。

②在利用正弦定理來解三角形的過程中,逐步培養應用數學知識來解決社會實際問題的能力。

(3)情感目標:通過設立問題情境,激發學生的學習動機和好奇心理,使其主動參與雙邊交流活動。通過對問題的提出、思考、解決培養學生自信、自立的優良心理品質。通過教師對例題的講解培養學生良好的學習習慣及科學的學習態度。

3、教學的重、難點

教學重點:正弦定理的內容,正弦定理的證明及基本應用; 教學難點:正弦定理的探索及證明;

教學中為了達到上述目標,突破上述重難點,我將采用如下的教學方法與手段

二、教學方法與手段

1、教學方法

教學過程中以教師為主導,學生為主體,創設和諧、愉悅教學環境。根據本節課內容和學生認知水平,我主要采用啟導法、感性體驗法、多媒體輔助教學。

2、學法指導

學情調動:學生在初中已獲得了直角三角形邊角關系的初步知識,正因如此學生在心理上會提出如何解決斜三角形邊角關系的疑問。

學法指導:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,讓學生在問題情景中學習,再通過對實例進行具體分析,進而觀察歸納、演練鞏固,由具體到抽象,逐步實現對新知識的理解深化。

3、教學手段

利用多媒體展示圖片,極大的吸引學生的注意力,活躍課堂氣氛,調動學生參與解決問題的積極性。為了提高課堂效率,便于學生動手練習,我把本節課的例題、課堂練習制作成一張習題紙,課前發給學生。

下面我講解如何運用上述教學方法和手段開展教學過程

三、教學過程設計

教學流程:

引出課題

引出新知

歸納方法

鞏固新知

布置作業

四、總結分析:

現代教育心理學的研究認為,有效的性質概念教學是建立在學生已有知識結構基礎上的,因此我在教學設計過程中注意了: ㈠在學生已有知識結構和新性質概念間尋找“最近發展區”, ㈡引導學生通過同化,順應掌握新概念。

㈢設法走出“性質概念一帶而過,演習作業鋪天蓋地”的誤區,促使自己與學生一起走進“重視探究、重視交流、重視過程” 的新天地。

我認為本節課的設計應遵循教學的基本原則;注重對學生思維的發展;貫徹教師對本節內容的理解;體現“學思結合﹑學用結合”原則。希望對學生的思維品質的培養﹑數學思想的建立﹑心理品質的優化起到良好的作用.

設計意圖:我的板書設計的指導原則:簡明直觀,重點突出。本節課的板書教學重點放在黑板的正中間,為了能加深學生對正弦定理以及其應用的認識,把例題放在中間,以期全班同學都能看得到。

謝謝!

高中數學正弦定理教案【篇12】

一、教材分析

《正弦定理》是人教版教材必修五第一章《解三角形》的第一節內容,也是三角形理論中的一個重要內容,與初中學習的三角形的邊和角的基本關系有密切的聯系。在此之前,學生已經學習過了正弦函數和余弦函數,知識儲備已足夠。它是后續課程中解三角形的理論依據,也是解決實際生活中許多測量問題的工具。因此熟練掌握正弦定理能為接下來學習解三角形打下堅實基礎,并能在實際應用中靈活變通。

二、教學目標

根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。

能力目標:探索正弦定理的證明過程,用歸納法得出結論,并能掌握多種證明方法。

情感目標:通過推導得出正弦定理,讓學生感受數學公式的整潔對稱美和數學的實際應用價值。

三、教學重難點

教學重點:正弦定理的內容,正弦定理的證明及基本應用。

教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。

四、教法分析

依據本節課內容的特點,學生的認識規律,本節知識遵循以教師為主導,以學生為主體的指導思想,采用與學生共同探索的教學方法,命題教學的發生型模式,以問題實際為參照對象,激發學生學習數學的好奇心和求知欲,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化,并且運用例題和習題來強化內容的掌握,突破重難點。即指導學生掌握“觀察——猜想——證明——應用”這一思維方法。學生采用自主式、合作式、探討式的學習方法,這樣能使學生積極參與數學學習活動,培養學生的合作意識和探究精神。

五、教學過程

本節知識教學采用發生型模式:

1、問題情境

有一個旅游景點,為了吸引更多的游客,想在風景區兩座相鄰的山之間搭建一條觀光索道。已知一座山A到山腳C的上面斜距離是1500米,在山腳測得兩座山頂之間的夾角是450,在另一座山頂B測得山腳與A山頂之間的夾角是300。求需要建多長的索道?

可將問題數學符號化,抽象成數學圖形。即已知AC=1500m,∠C=450,∠B=300。求AB=?

此題可運用做輔助線BC邊上的高來間接求解得出。

提問:有沒有根據已提供的數據,直接一步就能解出來的方法?

思考:我們知道,在任意三角形中有大邊對大角,小邊對小角的邊角關系。那我們能不能得到關于邊、角關系準確量化的表示呢?

2、歸納命題

我們從特殊的三角形直角三角形中來探討邊與角的數量關系:

在如圖Rt三角形ABC中,根據正弦函數的定義

高中數學正弦定理教案【篇13】

一、教材分析

“解三角形”既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數學問題”的建模過程中,體驗 “觀察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和“用數學”的意識。

二、學情分析

我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對“一些重要的數學思想和數學方法”的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。

三、教學目標

1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。

過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。

情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立“數學與我有關,數學是有用的,我要用數學,我能用數學”的理念。

2、教學重點、難點

教學重點:正弦定理的發現與證明;正弦定理的簡單應用。

教學難點:正弦定理證明及應用。

四、教學方法與手段

為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的`學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。

五、教學過程

為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:

(一)創設情景,揭示課題

問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?

1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?

問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通 是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)

[設計說明]引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。

(二)特殊入手,發現規律

問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?

引導啟發學生發現特殊情形下的正弦定理。

(三)類比歸納,嚴格證明

問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?

[設計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。

高中數學正弦定理教案【篇14】

高中數學正弦定理教案【篇15】

高中數學正弦定理教案【篇16】

1.本節課雖然在教師的引導下,完成了教學任務,但是一味地為了完成任務而忽略了對學生正確思維的展開和引導.上好一堂課不僅有好的教學設計,還應有靈活應變的能力,只有從思想上真正轉變為以學生的發展為根本,才不會為了進度而將學生強拉進自己事先設計好的軌道.正是教學有法,又無定法.

2.問題是思維的起點,是學生主動探索的動力.本節課通過對課本引例的解決、展開,引導學生在問題解決中發現結論.符合認識問題的思維規律,對激發學生探究問題興趣是非常有益的.

3.正弦定理的證明方法很多,如利用三角形的面積公式、利用三角形的外接圓、利用向量證明等,本節課將斜三角形的邊角關系轉化為直角三角形的邊角關系導出正弦定理,從學生的“最近發展區”入手去設計問題,思路自然,是學生們易于接受的一種證明方法.但在具體的推導時,要注意尊重學生思維的發展的過程,這是一種理念,也是一種能力.

4.在教學中恰當地利用多媒體技術,是突破教學難點的一個重要手段.本節課利用《幾何畫板》探究比值的值,由動到靜,取得了很好的效果.而課下學生問,∠A是鈍角的情形怎么證明呢?于是我將這一問題給學生留作思考題,即“你能否將∠A是鈍角的情形轉化為銳角的情形呢?”

在教學設計和課堂教學中應充分了解學生、研究學生,備課不僅是備知識,更重要的是備學生.作為教師只有真正樹立以學生的發展為本的教學理念,才能尊重學生思維過程的發生、發展,才能從學生的生活經驗和已有知識背景出發,創設合理的教學情境,才能為學生提供充分的數學活動和交流的機會,使學生從單純的知識接受者轉變為數學學習的主人.

高中數學正弦定理教案【篇17】

 一、教學內容分析

  本節課是高一數學第五章《三角比》第三單元中正弦定理的第一課時,它既是初中“解直角三角形”內容的直接延拓,也是坐標法等知識在三角形中的具體運用,是生產、生活實際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關系,它與后面的余弦定理都是解三角形的重要工具。

  本節課其主要任務是引入證明正弦定理及正弦定理的基本應用,在課型上屬于“定理教學課”。因此,做好“正弦定理”的教學,不僅能復習鞏固舊知識,使學生掌握新的有用的知識,體會聯系、發展等辯證觀點,學生通過對定理證明的探究和討論,體驗到數學發現和創造的歷程,進而培養學生提出問題、解決問題等研究性學習的能力。

  二、學情分析

  對高一的學生來說,一方面已經學習了平面幾何,解直角三角形,任意角的三角比等知識,具有一定觀察分析、解決問題的能力;但另一方面對新舊知識間的聯系、理解、應用往往會出現思維障礙,思維靈活性、深刻性受到制約。根據以上特點,教師恰當引導,提高學生學習主動性,注意前后知識間的聯系,引導學生直接參與分析問題、解決問題。

  三、設計思想:

  培養學生學會學習、學會探究是全面發展學生能力的重要方面,也是高中新課程改革的主要任務。如何培養學生學會學習、學會探究呢?建構主義認為:“知識不是被動吸收的,而是由認知主體主動建構的。”這個觀點從教學的角度來理解就是:知識不僅是通過教師傳授得到的,更重要的是學生在一定的情境中,運用已有的學習經驗,并通過與他人(在教師指導和學習伙伴的幫助下)協作,主動建構而獲得的,建構主義教學模式強調以學生為中心,視學生為認知的主體,教師只對學生的意義建構起幫助和促進作用。本節“正弦定理”的教學,將遵循這個原則而進行設計。

  四、教學目標:

  1、在創設的問題情境中,讓學生從已有的幾何知識和處理幾何圖形的常用方法出發,探索和證明正弦定理,體驗坐標法將幾何問題轉化為代數問題的優越性,感受數學論證的嚴謹性。

  2、理解三角形面積公式,能運用正弦定理解決三角形的兩類基本問題,并初步認識用正弦定理解三角形時,會有一解、兩解、無解三種情況。

  3、通過對實際問題的探索,培養學生的數學應用意識,激發學生學習的興趣,讓學生感受到數學知識既來源于生活,又服務與生活。

  五、教學重點與難點

  教學重點:正弦定理的探索與證明;正弦定理的基本應用。

  教學難點:正弦定理的探索與證明。

  突破難點的手段:抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給于適當的提示和指導。

  六、復習引入:

  1、在任意三角形行中有大邊對大角,小邊對小角的邊角關系?是否可以把邊、角關系準確量化?

  2、在ABC中,角A、B、C的正弦對邊分別是a,b,c,你能發現它們之間有什么關系嗎?

  結論:

  證明:(向量法)過A作單位向量j垂直于AC,由AC+CB=AB邊同乘以單位向量。

  正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等。

  七、教學反思

  本節是“正弦定理”定理的第一節,在備課中有兩個問題需要精心設計。一個是問題的引入,一個是定理的證明。通過兩個實際問題引入,讓學生體會為什么要學習這節課,從學生的“最近發展區”入手進行設計,尋求解決問題的方法。具體的思路就是從解決課本的實際問題入手展開,將問題一般化導出三角形中的邊角關系——正弦定理。因此,做好“正弦定理”的教學既能復習鞏固舊知識,也能讓學生掌握新的有用的知識,有效提高學生解決問題的能力。

  1、在教學過程中,我注重引導學生的思維發生,發展,讓學生體會數學問題是如何解決的,給學生解決問題的一般思路。從學生熟悉的直角三角形邊角關系,把銳角三角形和鈍角三角形的問題也轉化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數形結合思想等思想。

  2、在教學中我恰當地利用多媒體技術,是突破教學難點的一個重要手段。利用《幾何畫板》探究比值的值,由動到靜,取得了很好的效果,加深了學生的印象。

  3、由于設計的內容比較的多,教學時間的超時,這說明我自己對學生情況的把握不夠準確到位,致使教學過程中時間的分配不夠適當,教學語言不夠精簡,今后我一定避免此類問題,爭取更大的進步。

162328
領取福利

微信掃碼領取福利

微信掃碼分享