国产一区久久精品_性xxxxx_国产精品久久久久无码av_免费观看视频www

好多范文網(wǎng) haoduofanwen.com,好用的范文大全!

高中數(shù)學教案的模板

網(wǎng)友投稿 分享 時間: 加入收藏 我要投稿 點贊

高中數(shù)學教案的模板(例文15篇)

教案使教師能夠弄通教材內(nèi)容,準確把握教材的重點與難點,進而選擇科學、恰當?shù)慕虒W方法。下面小編給大家提供一些高中數(shù)學教案的模板參考,希望對大家寫高中數(shù)學教案的模板有幫助。

高中數(shù)學教案的模板篇1

一、 知識梳理

1.三種抽樣方法的聯(lián)系與區(qū)別:

類別 共同點 不同點 相互聯(lián)系 適用范圍

簡單隨機抽樣 都是等概率抽樣 從總體中逐個抽取 總體中個體比較少

系統(tǒng)抽樣 將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取 在起始部分采用簡單隨機抽樣 總體中個體比較多

分層抽樣 將總體分成若干層,按個體個數(shù)的比例抽取 在各層抽樣時采用簡單隨機抽樣或系統(tǒng)抽樣 總體中個體有明顯差異

(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為

(2)系統(tǒng)抽樣的步驟: ①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規(guī)則抽取樣本.

(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數(shù);③各層抽樣;④匯合成樣本.

(4) 要懂得從圖表中提取有用信息

如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數(shù)是矩形的中點的橫坐標③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計中位數(shù)的值

2.方差和標準差都是刻畫數(shù)據(jù)波動大小的數(shù)字特征,一般地,設(shè)一組樣本數(shù)據(jù) , ,…, ,其平均數(shù)為 則方差 ,標準差

3.古典概型的概率公式:如果一次試驗中可能出現(xiàn)的結(jié)果有 個,而且所有結(jié)果都是等可能的,如果事件 包含 個結(jié)果,那么事件 的概率P=

特別提醒:古典概型的兩個共同特點:

○1 ,即試中有可能出現(xiàn)的基本事件只有有限個,即樣本空間Ω中的元素個數(shù)是有限的;

○2 ,即每個基本事件出現(xiàn)的可能性相等。

4. 幾何概型的概率公式: P(A)=

特別提醒:幾何概型的特點:試驗的結(jié)果是無限不可數(shù)的;○2每個結(jié)果出現(xiàn)的可能性相等。

二、夯實基礎(chǔ)

(1)某單位有職工160名,其中業(yè)務(wù)人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務(wù)人員、管理人員、后勤人員的人數(shù)應(yīng)分別為____________.

(2)某賽季,甲、乙兩名籃球運動員都參加了

11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,

則甲、乙兩名運動員得分的中位數(shù)分別為( )

A.19、13 B.13、19 C.20、18 D.18、20

(3)統(tǒng)計某校1000名學生的數(shù)學會考成績,

得到樣本頻率分布直方圖如右圖示,規(guī)定不低于60分為

及格,不低于80分為優(yōu)秀,則及格人數(shù)是 ;優(yōu)秀率為 。

(4)在一次歌手大獎賽上,七位評委為歌手打出的分數(shù)如下:

9.4 8.4 9.4 9.9 9.6 9.4 9.7

去掉一個分和一個最低分后,所剩數(shù)據(jù)的平均值和方差分別為( )

A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016

(5)將一顆骰子先后拋擲2次,觀察向上的點數(shù),則以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=27的內(nèi)部的概率________.

(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )

三、高考鏈接

07、某班50名學生在一次百米測試中,成績?nèi)拷橛?3秒與19秒之間,將測試結(jié)果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒; 第六組,成績大于等于18秒且小于等于19秒.右圖

是按上述分組方法得到的頻率分布直方圖.設(shè)成績小于17秒的學生人數(shù)占全班總?cè)藬?shù)的百分比為 ,成績大于等于15秒且小于17秒的學生人數(shù)為 ,則從頻率分布直方圖中可分析出 和 分別為( )

08、從某項綜合能力測試中抽取100人的成績,統(tǒng)計如表,則這100人成績的標準差為( )

分數(shù) 5 4 3 2 1

人數(shù) 20 10 30 30 10

09、在區(qū)間 上隨機取一個數(shù)x, 的值介于0到 之間的概率為( ).

08、現(xiàn)有8名奧運會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.

(Ⅰ)求 被選中的概率;(Ⅱ)求 和 不全被選中的概率.

高中數(shù)學教案的模板篇2

1、教學目標:

一、借助單位圓理解任意角的三角函數(shù)的定義。

二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。

三、通過學生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學概念的嚴謹性與科學性。

四、讓學生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結(jié)合思想。

2、教學重點與難點:

重點:任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。

難點:任意角的三角函數(shù)概念的建構(gòu)過程。

授課過程:

一、引入

在我們的現(xiàn)實世界中的許多運動變化都有循環(huán)往復、周而復始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學的方法來刻畫這種變化?從這節(jié)課開始,我們要來學習刻畫這種規(guī)律的數(shù)學模型之一――三角函數(shù)。

二、創(chuàng)設(shè)情境

三角函數(shù)是與角有關(guān)的函數(shù),在學習任意角概念時,我們知道在直角坐標系中研究角,可以給學習帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進行歸類,現(xiàn)在大家考慮:若在直角坐標系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?

學生情況估計:學生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標。

問題:

1、銳角三角函數(shù)能否表示成第二種比值方式?

2、點P能否取在終邊上的其它位置?為什么?

3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個比值,不過其分母為1而已。

練習:計算的各三角函數(shù)值。

三、任意角的三角函數(shù)的定義

角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?

嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?

評價學生給出的定義。給出任意角三角函數(shù)的定義。

四、解析任意角三角函數(shù)的定義

三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點解析三角函數(shù)嗎?(定義域)

對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實數(shù)集之間可以建立一一對應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實數(shù)的函數(shù)。

五、三角函數(shù)的應(yīng)用。

1、已知角,求a的三角函數(shù)值。

2、已知角a終邊上的一點P(-3,-4),求各三角函數(shù)值。

以上兩道書上的例題,讓學生自習看書,學生看書的同時,老師提出問題:

1、已知角如何求三角函數(shù)值?

2、利用角a的終邊上任意一點的坐標也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)

3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數(shù)值。

4、探究:三角函數(shù)的值在各象限的符號。

六、小結(jié)及作業(yè)

教案設(shè)計說明:

新教材的教學理念之一是讓學生去體驗新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點來設(shè)計。

首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個問題,讓學生體會到新知識的發(fā)生是可能的,自然的。

其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學生提出自己的想法,同時讓學生去辨證這個想法是否是科學的?因為一個概念是嚴謹?shù)模茖W的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個立-破的過程中,讓學生去體驗一個新的數(shù)學概念可能是如何形成,在形成的過程中可以從哪些角度加以科學的辯思。這樣也有助于學生對任意角三角函數(shù)概念的理解。

再次,讓學生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個"形"的問題,轉(zhuǎn)換到直角坐標系下點的坐標這個"數(shù)"的過程的。培養(yǎng)數(shù)形結(jié)合的思想。

高中數(shù)學教案的模板篇3

教學目標:1、理解集合的概念和性質(zhì).

2、了解元素與集合的表示方法.

3、熟記有關(guān)數(shù)集.

4、培養(yǎng)學生認識事物的能力.

教學重點:集合概念、性質(zhì)

教學難點:集合概念的理解

教學過程:

1、定義:

集合:一般地,某些指定的對象集在一起就成為一個集合(集).元素:集合中每個對象叫做這個集合的元素.

由此上述例中集合的元素是什么?

例(1)的元素為1、3、5、7,

例(2)的元素為到兩定點距離等于兩定點間距離的點,

例(3)的元素為滿足不等式3x-2>x+3的實數(shù)x,

例(4)的元素為所有直角三角形,

例(5)為高一·六班全體男同學.

一般用大括號表示集合,{?}如{我校的籃球隊員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??

為方便,常用大寫的拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(1)確定性;(2)互異性;(3)無序性.

3、元素與集合的關(guān)系:隸屬關(guān)系

元素與集合的關(guān)系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A.

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)

注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q??

元素通常用小寫的拉丁字母表示,如a、b、c、p、q??

2、“∈”的開口方向,不能把a∈A顛倒過來寫。

4

注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0。

(2)非負整數(shù)集內(nèi)排除0的集。記作N_或N+。Q、Z、R等其它數(shù)集內(nèi)排除0

的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z_

請回答:已知a+b+c=m,A={xax2+bx+c=m},判斷1與A的關(guān)系。

1.1.2集合間的基本關(guān)系

教學目標:1.理解子集、真子集概念;

2.會判斷和證明兩個集合包含關(guān)系;

3.理解“?”、“?”的含義;≠

4.會判斷簡單集合的相等關(guān)系;

5.滲透問題相對的觀點。

教學重點:子集的概念、真子集的概念

教學難點:元素與子集、屬于與包含間區(qū)別、描述法給定集合的運算教學過程:

觀察下面幾組集合,集合A與集合B具有什么關(guān)系?

(1)A={1,2,3},B={1,2,3,4,5}.

(2)A={__>3},B={x3x-6>0}.

(3)A={正方形},B={四邊形}.

(4)A=?,B={0}.

(5)A={銀川九中高一(11)班的女生},B={銀川九中高一(11)班的學生}。

1.子集

定義:一般地,對于兩個集合A與B,如果集合A中的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A,記作A?B(或B?A),即若任意x?A,有x?B,則A?B(或A?B)。

這時我們也說集合A是集合B的子集(subset)。

如果集合A不包含于集合B,或集合B不包含集合A,就記作A?B(或B?A),即:若存在x?A,有x?B,則A?B(或B?A)

說明:A?B與B?A是同義的,而A?B與B?A是互逆的。

規(guī)定:空集?是任何集合的子集,即對于任意一個集合A都有??A。

(2)除去?與A本身外,集合A的其它子集與集合A的關(guān)系如何?

3.真子集:

由“包含”與“相等”的關(guān)系,可有如下結(jié)論:

(1)A?A(任何集合都是其自身的子集);

(2)若A?B,而且A?B(即B中至少有一個元素不在A中),則稱集合A是集合B的真子集(propersubset),記作A≠B。(空集是任何非空集合的真

子集)

(3)對于集合A,B,C,若A?B,B?C,即可得出A?C;對A?B,B?C,同樣≠≠

?有A≠C,即:包含關(guān)系具有“傳遞性”。

4.證明集合相等的方法:

?

第3/7頁

(1)證明集合A,B中的元素完全相同;(具體數(shù)據(jù))

(2)分別證明A?B和B?A即可。(抽象情況)

對于集合A,B,若A?B而且B?A,則A=B。

1.1.3集合的基本運算

教學目的:(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并

集與交集;

(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補

集;

(3)能用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽

象概念的作用。

教學重點:集合的交集與并集、補集的概念;

教學難點:集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;

【知識點】

1.并集

一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)

記作:A∪B讀作:“A并B”

即:A∪B={__∈A,或x∈B}

Venn圖表示:

第4/7頁

A與B的所有元素來表示。A與B的交集。

2.交集

一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。

記作:A∩B讀作:“A交B”

即:A∩B={x∈A,且x∈B}

交集的Venn圖表示

說明:兩個集合求交集,結(jié)果還是一個集合,是由集合A與B的公共元素組成的集合。

拓展:求下列各圖中集合A與B的并集與交集

A

說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,不能說兩個集合沒有交集

3.補集

全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集(Universe),通常記作U。

補集:對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集(complementaryset),簡稱為集合A的補集,

記作:CUA

即:CUA={__∈U且x∈A}

第5/7頁

補集的Venn圖表示

說明:補集的概念必須要有全集的限制

4.求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分

交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法。

5.集合基本運算的一些結(jié)論:

A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=?

若A∩B=A,則A?B,反之也成立

若A∪B=B,則A?B,反之也成立

若x∈(A∩B),則x∈A且x∈B

若x∈(A∪B),則x∈A,或x∈B

¤例題精講:

【例1】設(shè)集合U?R,A?{x?1?x?5},B?{x3?x?9},求A?B,?U(A?B).解:在數(shù)軸上表示出集合A、B

【例2】設(shè)A?{x?Zx?6},B??1,2,3?,C??3,4,5,6?,求:

(1)A?(B?C);(2)A??A(B?C).

【例3】已知集合A?{x?2?x?4},B?{__?m},且A?B?A,求實數(shù)m的取值范圍.

_且x?N}【例4】已知全集U?{__?10,,A?{2,4,5,8},B?{1,3,5,8},求

CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比較它們的關(guān)系.

高中數(shù)學教案的模板篇4

教學目標

1、了解基底的含義,理解并掌握平面向量基本定理。會用基底表示平面內(nèi)任一向量。

2、掌握向量夾角的定義以及兩向量垂直的定義。

學情分析

前幾節(jié)課已經(jīng)學習了向量的基本概念和基本運算,如共線向量、向量的加法、減法和數(shù)乘運算及向量共線的充要條件等;另外學生對向量的物理背景有了初步的了解。如:力的合成與分解、位移、速度的合成與分解等,都為學習這節(jié)課作了充分準備

重點難點

重點:對平面向量基本定理的探究

難點:對平面向量基本定理的理解及其應(yīng)用

教學過程

4.1第一學時教學活動

活動1【導入】情景設(shè)置

火箭在升空的某一時刻,速度可以分解成豎直向上和水平向前的兩個分速度v=vx+vy=6i+4j。

活動2【活動】探究

已知平面中兩個不共線向量e1,e2,c是平面內(nèi)任意向量,求向量

c=___e1+___e2(課堂上準備好幾張帶格子的紙張,上面有三個向量,e1,e2,c)

做法:

作OA=e1,OB=e2,OC=c,過點C作平行于OB的直線,交直線OA于M;過點C作平行于OA的直線,交OB于N,則有且只有一對實數(shù)l1,l2,使得OM=l1e1,ON=l2e2。

因為OC=OM+ON,所以c=6e1+6e2。

向量c=__6__e1+___6__e2

活動3【練習】動手做一做

請同學們自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____

(做完后,思考一下,這樣的一組實數(shù)是否是唯一的呢?)(是唯一的)

由剛才的幾個實例,可以得出結(jié)論:如果給定向量e1,e2,平面內(nèi)的任一向量a,都可以表示成a=入1e1+入2e2。

活動4【活動】思考

問題2:如果e1,e2是平面內(nèi)任意兩向量,那么平面內(nèi)的任一向量a還可以表示成a=入1e1+入2e2的形式嗎?

生:不行,e1,e2必須是平面內(nèi)兩不共線向量

活動5【講授】平面向量基本定理

平面向量基本定理:如果e1,e2是平面內(nèi)兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)l1,l2,使a=l1e1+l2e2。我們把不共線向量e1,e2叫做這一平面內(nèi)所有向量的一組基底。一個平面向量用一組基底e1,e2表示成a=l1e1+l2e2的形式,我們稱它為向量的分解。當e1,e2互相垂直時,就稱為向量的正交分解。

說明:

(1)基底不惟一,關(guān)鍵是作為基底的兩個向量不共線。

(2)由定理可將任一向量a在給出基底e1,e2的條件下進行分解,基底給定時,分解形式惟一,即l1,l2是被a,e1,e2惟一確定的數(shù)量。

活動6【講授】平面向量基底運用

例1.如圖所示,平行四邊形ABCD的對角線AC和BD交于點M,AB=a,AD=b,試用基底a,b表示MC,MA,MB和MD

活動7【講授】向量夾角的定義

閱讀教材P94,回答如下問題:

1、兩個向量夾角是如何形成的?,必須要滿足什么條件才是它們的夾角。

2、有向量夾角范圍是多少?有夾角大小來描述一下向量同向,反向,垂直?

活動8【練習】完成《聚焦課堂》活動9【講授】課后小結(jié)

1、平面向量基本定理

2、平面向量基本定理的運用

3、向量夾角的定義。

活動10【作業(yè)】課后作業(yè)

1、已知向量e1,e2,求做:-3e1+2e2

2、做育才報第八期專項訓練1

高中數(shù)學教案的模板篇5

一、教學內(nèi)容

本節(jié)主要內(nèi)容為:經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。

二、教學目標

1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關(guān)推理,進一步體會三角函數(shù)的意義。

2、能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。

3、能夠根據(jù)30°、45°、60°角的三角函數(shù)值,說出相應(yīng)的銳角的大小。

三、過程與方法

通過進行有關(guān)推理,探索30°、45°、60°角的三角函數(shù)值。在具體教學過程中,教師可在教材的基礎(chǔ)上適當拓展,使得內(nèi)容更為豐富.教師可以運用和學生共同探究式的教學方法,學生可以采取自主探討式的學習方法.

四、教學重點和難點

重點:進行含有30°、45°、60°角的三角函數(shù)值的計算

難點:記住30°、45°、60°角的三角函數(shù)值

五、教學準備

教師準備

預先準備教材、教參以及多媒體課件

學生準備

教材、同步練習冊、作業(yè)本、草稿紙、作圖工具等

六、教學步驟

教學流程設(shè)計

教師指導學生活動

1.新章節(jié)開場白.1.進入學習狀態(tài).

2.進行教學.2.配合學習.

3.總結(jié)和指導學生練習.3記錄相關(guān)內(nèi)容,完成練習.

教學過程設(shè)計

1、從學生原有的認知結(jié)構(gòu)提出問題

2、師生共同研究形成概念

3、隨堂練習

4、小結(jié)

5、作業(yè)

板書設(shè)計

1、敘述三角函數(shù)的意義

2、30°、45°、60°角的三角函數(shù)值

3、例題

七、課后反思

本節(jié)課基本上能夠突出重點、弱化難點,在時間上也能掌控得比較合理,學生也比較積極投入學習中,但是學生好像并不是掌握得很好,在今后的教學中應(yīng)該再加強關(guān)于這方面的學習。

高中數(shù)學教案的模板篇6

一、單元教學內(nèi)容分析

本章節(jié)內(nèi)容教學北師大版教材安排在三角函數(shù)章節(jié)之后,教本必修四的中間位置,為后面推導和差角公式做好鋪墊,為解三角形問題和平面幾何中的許多計算問題提供便利工具。

向量既有代數(shù)特征,又有幾何特征,是溝通代數(shù)與幾何的橋梁。向量具有代數(shù)特征,運算及其規(guī)律是代數(shù)學研究的基本問題。向量可以進行多種運算,如向量加、減、數(shù)乘和叉乘等。向量運算具有一系列豐富的運算性質(zhì),與數(shù)運算相比,向量運算擴充了運算的對象和運算的性質(zhì)。向量具有幾何特征,它不僅可以描述、刻畫幾何中的點、線、面及其位置關(guān)系,數(shù)量關(guān)系,還可以表示空間當中的曲線與曲面,是研究幾何問題的基本工具。本教材能從學生熟悉的實例出發(fā),經(jīng)過觀察、分析、歸納等方法概括出向量的相關(guān)概念,比以往教材更能使學生產(chǎn)生自然而親切的感覺,有助于激發(fā)學生的學習興趣,調(diào)動學生學習的積極性,使他們真正認識到數(shù)學的應(yīng)用價值,從而提高學生應(yīng)用數(shù)學的意識。

向量是刻畫現(xiàn)實世界的重要的數(shù)學模型。它為理解抽象代數(shù)、線性代數(shù)、泛函分析提供了基本數(shù)學模型。他與物理學科緊密相連。由于向量是近代數(shù)學中重要和基本的數(shù)學概念,是溝通代數(shù)、幾何與三角函數(shù)的一種重要工具,它有極其豐富的實際背景,有著廣泛的實際應(yīng)用,因此它具有很高的教育教學價值,它對更新和完善知識結(jié)構(gòu)具有重要的意義。

教材結(jié)合向量的幾何背景——有向線段,引入向量的表示法,規(guī)定了向量的長度的概念。定義了零向量、單位向量、平行向量和共線向量等概念。對于許多舊有的知識利用向量方法去處理,就會變得非常簡捷,甚至變得十分明了,從而有助于學生對這些知識有更深刻的理解,更牢固的記憶,更自如的應(yīng)用,總之,有助于學生建立良好的數(shù)學認知結(jié)構(gòu)。通過本部分內(nèi)容的學習,可以促使學生認識到向量與實際生活緊密相連,它在解決實際問題當中有著廣泛應(yīng)用。

二、單元學生情況分析

1、學生在初中階段接觸過物理學里面的矢量,已具備基本的認知水平和運算能力,具備在運算中探索和發(fā)現(xiàn)數(shù)學結(jié)論的基本能力。

2、學生已基本掌握函數(shù)和三角函數(shù)章節(jié)的基礎(chǔ)知識,會運用數(shù)形結(jié)合法,整體代換,分類討論法,類比思想解決實際問題。

3、學生已具備基本的分析和解決數(shù)學問題的勇氣和智慧。

三、教學目標

1.知識與技能目標

(1)理解并掌握平面向量的基本概念。通過力與力的分析實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示。

(2)通過實例,掌握向量的加、減、數(shù)乘向量和兩向量數(shù)量積運算,并理解其幾何意義。

(3)理解并掌握向量共線和垂直問題。理解平面向量基本定理及其意義。掌握平面向量的正交分解及其坐標表示。會用坐標表示向量的加、減、數(shù)乘向量及數(shù)量積運算。

(4)通過物理中“功”等實例,理解平面向量數(shù)量積的含義及其物理意義。體會平面向量的數(shù)量積與向量投影的關(guān)系。掌握數(shù)量積的坐標表示,能運用數(shù)量積表示兩個向量的夾角,會用數(shù)量積來判斷向量的垂直問題。

2.過程與方法目標

(1)通過實例讓學生親身經(jīng)歷觀察、分析、歸納、抽象概括的思維過程。感受和認知不同維度中的向量表示。

(2)通過讓學生體會平面向量數(shù)量積的物理意義和幾何意義,體會數(shù)學與物理是密切聯(lián)系的。

(3)經(jīng)歷用向量方法解決某些簡單的平面幾何及力學問題與其他一些實際問題的過程,體會向量是一種處理幾何問題、物理問題等的工具,使學生的運算能力和解決實際問題的能力得到提升。

3.情感、態(tài)度與價值觀

(1)從學生熟悉的生活實例出發(fā)建立平面向量概念,激發(fā)學生的學習興趣。從物理知識引入到數(shù)學知識的形成過程,使學生體會到知識之間的相互聯(lián)系,建立全面、科學的價值觀。

(2)通過對向量正交分解的學習,使學生進一步體會一般的問題往往歸結(jié)為人們最熟悉的特殊問題。

(3)通過對本章節(jié)內(nèi)容的學習,使學生體會到數(shù)學和其他知識相聯(lián)系,體會數(shù)學作為解決問題的工具的作用。

重點:

1.平面向量的概念,運算,共線問題,平面向量的基本定理。

2.平面向量的坐標表示,向量數(shù)量積的概念和性質(zhì),向量的垂直問題。

3.體會向量在解決平面幾何問題和物理問題中的作用。

難點:

1.對自由向量,向量加、減法數(shù)乘向量定義的理解和對平面向量基本定理理解。

2.對平面向量運算坐標表示及向量數(shù)量積概念的理解,平面向量數(shù)量積的應(yīng)用。

3.用向量表示幾何關(guān)系。

四、單元教學活動

1.引入向量相關(guān)概念時,除用教材中給出的實例外,鼓勵學生列舉實際生活中的其他實例。

2.學習向量知識的同時,盡量地聯(lián)系熟悉的物理現(xiàn)象或其他生活實例,用向量表述和刻畫。以便讓學生領(lǐng)悟到知識之間和學科之間的相互聯(lián)系。

3.通過協(xié)作討論,根據(jù)生活中的實際案例,邊了解概念,邊畫圖;邊進行計算,邊畫圖;進一步培養(yǎng)學生數(shù)形結(jié)合、形象思考、分析問題的習慣。

4.在學習本章知識的過程中,應(yīng)注意向量運算的兩個方面:幾何意義與代數(shù)表示。由于新知識的學習過程中,它們相對孤立,學生對他們的認識也就不容易形成體系。所以在教授新課時應(yīng)有意識地做一些滲透和鋪墊,在章節(jié)小結(jié)時應(yīng)強調(diào)它們的區(qū)別與聯(lián)系,以便學生更加全面、深刻的認識向量。

高中數(shù)學教案的模板篇7

教學目標

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用.

(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.

(2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.

2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力.

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性.

教學建議

教材分析

(1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學領(lǐng)域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎(chǔ).

(2) 本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學的重點.

(3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點.

教法建議

(1) 對數(shù)函數(shù)在引入時,就應(yīng)從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù) 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

(2) 在本節(jié)課中結(jié)合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.

高中數(shù)學教案的模板篇8

高中數(shù)學的內(nèi)容多,抽象性、理論性強,高中很注重自學能力的培養(yǎng),誰的自學能力強,那么在一定程度上影響著你的成績以及將來你發(fā)展的前途。同時還要注意以下幾點:

第一、對數(shù)學學科特點有清楚的認識

數(shù)學的概念、方法、思想都是人類長期實踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實數(shù)再到復數(shù),都是由自然的認知沖突引起的。因此,在學習過程中我們有必要了解知識產(chǎn)生的背景,它的形成過程以及它的應(yīng)用,讓數(shù)學顯得合情合理,渾然天成。數(shù)學中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數(shù)學規(guī)則去學去想就能融會貫通,但是如果不把來龍去脈想清楚而是“想當然”的`話,那就學不下去了。

第二、要改變一個觀念。

有人會說自己的基礎(chǔ)不好。那什么是基礎(chǔ)?今天所學的知識就是明天的基礎(chǔ)。明天學習的知識就是后天的基礎(chǔ),

所以只要學好每一天的內(nèi)容,那么你打的基礎(chǔ)就是最扎實的了。所以現(xiàn)在你們是在同一個起跑線上的,無所謂基礎(chǔ)好不好。

第三、學數(shù)學要摸索自己的學習方法

學習重在方法,好的學習方法讓學生事半功倍。學習、掌握并能靈活應(yīng)用數(shù)學的途徑有很多,做習題、用數(shù)學知識解決各種問題是必需的,理解、學會證明、領(lǐng)會思想、掌握方法也是必需的。同時,要注意前后知識的銜接,類比地學、聯(lián)系地學,既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。

相關(guān)文章推薦:

1.高中開學第一周教學反思

2.開學第一課教學反思精選

3.20--初中開學第一課教學反思【精選】

4.高三開學教學反思

5.高一信息技術(shù)教學反思

6.開學第一課語文教學反思

7.幼兒園開學第一課反思

8.高中英語教學反思精選

9.高中生物教育反思

10.20--開學第一課教學反思

高中數(shù)學教案的模板篇9

一、教學內(nèi)容分析

二面角是我們?nèi)粘I钪薪?jīng)常見到的一個圖形,它是在學生學過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進一步完善了空間角的概念。掌握好本節(jié)課的知識,對學生系統(tǒng)地理解直線和平面的知識、空間想象能力的培養(yǎng),乃至創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

二、教學目標設(shè)計

理解二面角及其平面角的概念;能確認圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運用它們解決相關(guān)問題。

三、教學重點及難點

二面角的平面角的概念的形成以及二面角的平面角的作法。

四、教學流程設(shè)計

五、教學過程設(shè)計

一、新課引入

1。復習和回顧平面角的有關(guān)知識。

平面中的角

定義從一個頂點出發(fā)的兩條射線所組成的圖形,叫做角

圖形

結(jié)構(gòu)射線點射線

表示法AOB,O等

2。復習和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征。(空間角轉(zhuǎn)化為平面角)

3。觀察:陡峭與否,跟山坡面與水平面所成的角大小有關(guān),而山坡面與水平面所成的角就是兩個平面所成的角。在實際生活當中,能夠轉(zhuǎn)化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現(xiàn)兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關(guān)。)從而,引出二面角的定義及相關(guān)內(nèi)容。

二、學習新課

(一)二面角的定義

平面中的角二面角

定義從一個頂點出發(fā)的兩條射線所組成的圖形,叫做角課本P17

圖形

結(jié)構(gòu)射線點射線半平面直線半平面

表示法AOB,O等二面角a或—AB—

(二)二面角的圖示

1。畫出直立式、平臥式二面角各一個,并分別給予表示。

2。在正方體中認識二面角。

(三)二面角的平面角

平面幾何中的角可以看作是一條射線繞其端點旋轉(zhuǎn)而成,它有一個旋轉(zhuǎn)量,它的大小可以度量,類似地,二面角也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成,它也有一個旋轉(zhuǎn)量,那么,二面角的大小應(yīng)該怎樣度量?

1。二面角的平面角的定義(課本P17)。

2。AOB的大小與點O在棱上的位置無關(guān)。

[說明]①平面與平面的位置關(guān)系,只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,有必要來研究二面角的度量問題。

②與兩條異面直線所成的角、直線和平面所成的角做類比,用平面角去度量。

③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內(nèi);角的兩邊分別與棱垂直。

3。二面角的平面角的范圍:

(四)例題分析

例1一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個的二面角,求此時B、C兩點間的距離。

[說明]①檢查學生對二面角的平面角的定義的掌握情況。

②翻折前后應(yīng)注意哪些量的位置和數(shù)量發(fā)生了變化,哪些沒變?

例2如圖,已知邊長為a的等邊三角形所在平面外有一點P,使PA=PB=PC=a,求二面角的大小。

[說明]①求二面角的步驟:作證算答。

②引導學生掌握解題可操作性的通法(定義法和線面垂直法)。

例3已知正方體,求二面角的大小。(課本P18例1)

[說明]使學生進一步熟悉作二面角的平面角的方法。

(五)問題拓展

例4如圖,山坡的傾斜度(坡面與水平面所成二面角的度數(shù))是,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是,沿這條路上山,行走100米后升高多少米?

[說明]使學生明白數(shù)學既來源于實際又服務(wù)于實際。

三、鞏固練習

1。在棱長為1的正方體中,求二面角的大小。

2。若二面角的大小為,P在平面上,點P到的距離為h,求點P到棱l的距離。

四、課堂小結(jié)

1。二面角的定義

2。二面角的平面角的定義及其范圍

3。二面角的平面角的常用作圖方法

4。求二面角的大小(作證算答)

五、作業(yè)布置

1。課本P18練習14。4(1)

2。在二面角的一個面內(nèi)有一個點,它到另一個面的距離是10,求它到棱的距離。

3。把邊長為a的正方形ABCD以BD為軸折疊,使二面角A—BD—C成的二面角,求A、C兩點的距離。

六、教學設(shè)計說明

本節(jié)課的設(shè)計不是簡單地將概念直接傳受給學生,而是考慮到知識的形成過程,設(shè)法從學生的數(shù)學現(xiàn)實出發(fā),調(diào)動學生積極參與探索、發(fā)現(xiàn)、問題解決全過程。二面角及二面角的平面角這兩大概念的引出均運用了類比的手段和方法。教學過程中通過教師的層層鋪墊,學生的主動探究,使學生經(jīng)歷概念的形成、發(fā)展和應(yīng)用過程,有意識地加強了知識形成過程的教學。

高中數(shù)學教案的模板篇10

一、教材分析

1.地位及作用

"余弦定理"是人教A版數(shù)學必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問題的兩個重要定理之一,也是初中"勾股定理"內(nèi)容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉(zhuǎn)化為三角形計算問題的其它數(shù)學問題及生產(chǎn)、生活實際問題的重要工具具有廣泛的應(yīng)用價值,起到承上啟下的作用。

2.教學重、難點

重點:余弦定理的證明過程和定理的簡單應(yīng)用。

難點:利用向量的數(shù)量積證余弦定理的思路。

二、教學目標

知識目標:能推導余弦定理及其推論,能運用余弦定理解已知"邊,角,邊"和"邊,邊,邊"兩類三角形。

能力目標:培養(yǎng)學生知識的遷移能力;歸納總結(jié)的能力;運用所學知識解決實際問題的能力。

情感目標:從實際問題出發(fā)運用數(shù)學知識解決問題這個過程體驗數(shù)學在實際生活中的運用,激發(fā)學生學習數(shù)學的興趣。通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學的理性和嚴謹。

三、教學方法

數(shù)學課堂上首先要重視知識的發(fā)生過程,既能展現(xiàn)知識的`獲取,又能暴露解決問題的思維。在本節(jié)教學中,我將遵循"提出問題、分析問題、解決問題"的步驟逐步推進,以課堂教學的組織者、引導者、合作者的身份,組織學生探究、歸納、推導,引導學生逐個突破難點,師生共同解決問題,使學生在各種數(shù)學活動中掌握各種數(shù)學基本技能,初步學會從數(shù)學角度去觀察事物和思考問題,產(chǎn)生學習數(shù)學的愿望和興趣。

四、教學過程

本節(jié)教學中通過創(chuàng)設(shè)情境,充分調(diào)動學生已有的學習經(jīng)驗,讓學生經(jīng)歷"現(xiàn)實問題轉(zhuǎn)化為數(shù)學問題"的過程,發(fā)現(xiàn)新的知識,把學生的潛意識狀態(tài)的好奇心變?yōu)樽杂X求知的創(chuàng)新意識。又通過實際操作,使剛產(chǎn)生的數(shù)學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質(zhì)。

幫助學生從平面幾何、三角函數(shù)、向量知識等方面進行分析討論,選擇簡潔的處理工具,引發(fā)學生的積極討論。你能夠有更好的具體的量化方法嗎?問題可轉(zhuǎn)化為已知三角形兩邊長和夾角求第三邊的問題,即:在其中已知AC=b,AB=c和A,求a.

學生對向量知識可能遺忘,注意復習;在利用數(shù)量積時,角度可能出現(xiàn)錯誤,出現(xiàn)不同的表示形式,讓學生從錯誤中發(fā)現(xiàn)問題,鞏固向量知識,明確向量工具的作用。同時,讓學生明確數(shù)學中的轉(zhuǎn)化思想:化未知為已知。將實際問題轉(zhuǎn)化成數(shù)學問題,引導學生分析問題。其中已知a=5,b=7,c=8,求B.

學生思考或者討論,若有同學答則順勢引出推論,若不能作答則由老師引導推出推論,然后返回解決該問題。

讓學生觀察推論的特征,討論該推論有什么用。

高中數(shù)學教案的模板篇11

教學內(nèi)容:習慣的養(yǎng)成(養(yǎng)成教育)

教學目標:

1.用輕松親切的語調(diào),讓孩子們對小學生活有一個感性的認識。

2.培養(yǎng)衛(wèi)生習慣、生活習慣、學習習慣、愛護公物的習慣。

3.通過學習,讓孩子們對小學生活滿懷美好的憧憬。

教學過程:

師:小朋友們好!首先祝賀小朋友們光榮地成為了一名小學生!老師看到每一個孩子的笑臉,真高興啊,你們就像花兒一樣,老師非常喜歡你們!

(在黑板上寫一個大大的“聰”字)

師:認識這個字嗎?

生:聰!

師:對,聰明的聰。你們想不想成為一個聰明的孩子?

生:想!

師:怎么樣才能成為聰明的孩子呢?我們來看,“聰”字是由耳朵、眼睛、嘴巴,還有一個“心”字組成的。小朋友們,我們只要會用耳朵聽,會用眼睛看,會用嘴巴說,再會用心去做,你就一定會是一個聰明的好孩子。你能做到嗎?下面我們開始試一試啦!

首先是會用耳朵聽。聽老師說話要專心,不能東張西望,聽同學發(fā)言,要注意聽他回答對了沒有,如果你還有想法,就舉手說出你的想法。誰聽懂了?(試問學生)

第二要會用眼睛看。你看到我們的教室干凈嗎?那是昨天我和曾老師花了很長時間打掃的。那綠色的很新的墻群是我和曾老師親自粉刷的。所以,請同學們不要用手去摸,更不要用腳去踢,就像愛護我們的眼睛一樣地去愛護它,誰能做得到?

第三要會用嘴巴說話。上課時,老師提問后,請你把小手舉起來,回答問題要響亮,讓全班小朋友都聽得到,每個小朋友都要會用你的小嘴巴表達哦!

我們會用耳朵聽,會用眼睛看,會用嘴巴說,是不是就很聰明了呢?不,最重要的是要會用心去聽,會用心去看,會用心去說,一句話,就是做什么事都要用心去做,才是真正聰明的孩子。

聰明的孩子要做到以下幾點:

一、愛護公物。學校的一草一木,一桌一椅,學校里所有的東西都要愛護。不踩花,不摘花,不踩草坪,不摘樹葉,不在桌子上亂刻亂畫,不在教室里追逐打鬧。我們學校的操場正在施工,請小朋友們不要到操場上玩耍。

二、講究衛(wèi)生。上廁所時,不能在廁所外面隨處大小便,要進到廁所里指定的位置,你能做到了嗎?(課后,帶隊去看男女廁所的位置)在家里,每天早晚要刷牙,勤洗澡,勤換衣服,勤剪指甲。不隨地吐痰,預防傳染病。

三、愛惜糧食。早餐要吃完,午托的中餐要吃完,要多少就吃多少。今天,老師想看看誰是最愛惜糧食的好孩子。(放晚學前總結(jié))

四、排路隊時要做到快、靜、齊。教給大家我編的兒歌:“排路隊,手牽手,不說話,排整齊?!弊叱鲂iT后,如果找不到家長,不要自己回,要找到老師,或者回到校門口等家長來接。

五、我們是小學生了,不能帶玩具來學校玩,也不要帶錢來買零食吃?,F(xiàn)在天氣炎熱,我們每天要從家里自己帶來一瓶水,多喝水,既清嗓來又防病,聽明白了嗎?我相信我們一(7)班的小朋友一定會成為一個聰明的講文明的小學生。

后記:今天加班打印各種材料,包括開學初的養(yǎng)成教案。不知不覺已到教師節(jié)。祝各位同行教師節(jié)快樂!天天開心!

高中數(shù)學教案的模板篇12

以下是一個高中數(shù)學網(wǎng)課的教學敘事教案的示例:

敘事者:一位在線高中數(shù)學教師

目標:本課程的目標是幫助學生理解高中數(shù)學的基本概念和技能,并能夠在在線課堂中積極參與互動。

內(nèi)容:

1.理解函數(shù)的基本概念和性質(zhì)(課時1)

在本次課程中,我們將重點理解函數(shù)的基本概念和性質(zhì)。我們將介紹函數(shù)的定義、變量、自變量和因變量之間的關(guān)系,以及函數(shù)的單調(diào)性、奇偶性和有界性。此外,學生將通過在線練習來鞏固這些概念。

2.掌握指數(shù)函數(shù)和對數(shù)函數(shù)(課時2)

在本次課程中,我們將重點掌握指數(shù)函數(shù)和對數(shù)函數(shù)的基本性質(zhì)和圖像。我們將介紹指數(shù)函數(shù)、對數(shù)函數(shù)的概念和性質(zhì),以及如何利用它們進行計算。學生將通過在線練習來鞏固這些概念。

3.理解三角函數(shù)的性質(zhì)和圖像(課時3)

在本次課程中,我們將重點理解三角函數(shù)的基本性質(zhì)和圖像。我們將介紹三角函數(shù)的定義、符號、單位圓以及三角函數(shù)的性質(zhì)和圖像。學生將通過在線練習來鞏固這些概念。

4.掌握數(shù)列的基本概念和性質(zhì)(課時4)

在本次課程中,我們將重點掌握數(shù)列的基本概念和性質(zhì)。我們將介紹數(shù)列的定義、通項公式、前n項和以及數(shù)列的遞推關(guān)系。學生將通過在線練習來鞏固這些概念。

5.掌握幾何的基本概念和性質(zhì)(課時5)

在本次課程中,我們將重點掌握幾何的基本概念和性質(zhì)。我們將介紹幾何的定義、點、直線、平面以及幾何的公理和定理。學生將通過在線練習來鞏固這些概念。

評估:

本課程的評估方式包括在線測試、作業(yè)和在線討論。在線測試旨在檢驗學生對基本概念和技能的掌握情況,作業(yè)旨在幫助學生鞏固所學知識,在線討論旨在促進師生之間的互動和交流。

教育敘事高中數(shù)學為本網(wǎng)站原創(chuàng)作品,不得擅自轉(zhuǎn)載!

高中數(shù)學教案的模板篇13

一、教學目標

1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。

2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。

二、教學重點難點

重點:畫出簡單幾何體、簡單組合體的三視圖;

難點:識別三視圖所表示的空間幾何體。

三、學法指導:

觀察、動手實踐、討論、類比。

四、教學過程

(一)創(chuàng)設(shè)情景,揭開課題

展示廬山的風景圖——“橫看成嶺側(cè)看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。

(二)講授新課

1、中心投影與平行投影:

中心投影:光由一點向外散射形成的投影;

平行投影:在一束平行光線照射下形成的投影。

正投影:在平行投影中,投影線正對著投影面。

2、三視圖:

正視圖:光線從幾何體的前面向后面正投影,得到的`投影圖;

側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

三視圖的畫法規(guī)則:長對正,高平齊,寬相等。

長對正:正視圖與俯視圖的長相等,且相互對正;

高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;

寬相等:俯視圖與側(cè)視圖的寬度相等。

3、畫長方體的三視圖:

正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

4、畫圓柱、圓錐的三視圖:

5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。

(三)鞏固練習

課本P15練習1、2;P20習題1.2[A組]2。

(四)歸納整理

請學生回顧發(fā)表如何作好空間幾何體的三視圖

(五)布置作業(yè)

課本P20習題1.2[A組]1。

高中數(shù)學教案的模板篇14

教學目標:

(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

(2)進一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.

教學重點、難點:求曲線的方程.

教學用具:計算機.

教學方法:啟發(fā)引導法,討論法.

教學過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學生思考并回答.教師強調(diào).

2.坐標法和解析幾何的意義、基本問題.

對于一個幾何問題,在建立坐標系的基礎(chǔ)上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質(zhì).

事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問題】

如何根據(jù)已知條件,求出曲線的方程.

【實例分析】

例1:設(shè) 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

解法一:易求線段 的中點坐標為(1,3),

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?

(通過教師引導,是學生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點的坐標都是這個方程的解.

設(shè) 是線段 的垂直平分線上任意一點,則

將上式兩邊平方,整理得

這說明點 的坐標 是方程 的解.

(2)以這個方程的解為坐標的點都是曲線上的點.

設(shè)點 的坐標 是方程①的任意一解,則

到 、 的距離分別為

所以 ,即點 在直線 上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設(shè) 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

解法二:設(shè) 是線段 的垂直平分線上任意一點,也就是點 屬于集合

由兩點間的距離公式,點所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想.因此是個好方法.

讓我們用這個方法試解如下問題:

例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.

分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

求解過程略.

【概括總結(jié)】通過學生討論,師生共同總結(jié):

分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

(1)建立適當?shù)淖鴺讼?,用有序?qū)崝?shù)對例如 表示曲線上任意一點 的坐標;

(2)寫出適合條件 的點 的集合

;

(3)用坐標表示條件 ,列出方程 ;

(4)化方程 為最簡形式;

(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正.

下面再看一個問題:

例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

解:設(shè)點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

由距離公式,點 適合的條件可表示為

將①式 移項后再兩邊平方,得

化簡得

由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

【練習鞏固】

題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

分析、略解:首先應(yīng)建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設(shè) 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

根據(jù)條件 ,代入坐標可得

化簡得

由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進一步求出 、 的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁練習1,2,3;

高中數(shù)學教案的模板篇15

教學目標:

1、在新學期能夠以積極的學習態(tài)度投入到學習中去,并用高昂的興趣參與學習。

2、熟悉新學期音樂課的要求,并能夠有意識的遵守,以良好的學習習慣規(guī)范自己在課堂中的表現(xiàn)。

教學重點:

養(yǎng)成良好的學習習慣

教學過程:

一.師生互相問好,拉近彼此的距離。

二.師生共同演繹節(jié)目,學生表演,老師表演,增進彼此感情,與孩子打成一片。

三.講述新學期音樂課要求:

1、按時按順序進入教室,不遲到,不早退。

2、進入教室不得高聲喧嘩打鬧,保持安靜狀態(tài)。

3、認真保持教室衛(wèi)生,不亂扔果皮紙屑,不隨地吐痰。

4、課堂上發(fā)言積極有序,有禮有節(jié),爭做文明小學生。

5、做到愛護公共物品,輕拿輕放,損壞照價賠償。

6、上課保持良好的狀態(tài),以積極的態(tài)度認真學習。

四、習慣養(yǎng)成訓練,聽音樂做出相關(guān)要求:

1、起立、坐下

2、安靜

3、師生問好

4、請坐好

5、同桌面對

五、分組選撥,并對小組長提出要求

1、四人一小組

2、講述課堂要求,小組合作學習,評價真實客觀,學會欣賞別人;正當優(yōu)秀小組,小組團結(jié)合作,富有創(chuàng)新;組長根據(jù)組員的表現(xiàn),從紀律、學習習慣、上課表現(xiàn)上進行評價計分,獲得3分就可獲得一張綠卡。

小結(jié):

希望第一節(jié)課能讓師生互相留下印象,更好的進行今后的音樂教學,把音樂課上的更加的有聲有色。

163066
領(lǐng)取福利

微信掃碼領(lǐng)取福利

微信掃碼分享