国产一区久久精品_性xxxxx_国产精品久久久久无码av_免费观看视频www

好多范文網 haoduofanwen.com,好用的范文大全!

高中數學教案最新模板

網友投稿 分享 時間: 加入收藏 我要投稿 點贊

教案是老師教什么,學生學什么,學生根據老師安排的教學內容進行學習、思考、模仿等過程。想知道如何寫出優秀的高中數學教案最新模板嗎?這里為大家分享高中數學教案最新模板,快來學習吧!

高中數學教案最新模板篇1

教學目標:

1、使學生通過觀察、操作、實驗等活動,找出簡單事物的排列組合規律。

2、培養學生初步的觀察、分析和推理能力以及有順序地、全面地思考問題的意識。

3、使學生感受數學在現實生活中的廣泛應用,嘗試用數學的方法來解決實際生活中的問題。使學生在數學活動中養成與人合作的良好習慣。

教學過程:

一、創設增境,激發興趣。

師:今天我們要去"數學廣角樂園"游玩,你們想去嗎?

二、操作探究,學習新知。

<一>組合問題

l、看一看,說一說

師:那我們先在家里挑選穿上漂亮的衣服吧。(課件出示主題圖)

師引導思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學生說一說)

2、想一想,擺一擺

(l)引導討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復呢?

①學生小組討論交流,老師參與小組討論。

②學生匯報

(2)引導操作:小組同學互相合作,把你們設計的穿法有序的貼在展示板上。(要求:小組長拿出學具衣服圖片、展示板)

①學生小組合作操作擺,教師巡視參與小組活動。

②學生展示作品,介紹搭配方案。

③生生互相評價。

(3)師引導觀察:

第一種方案(按上裝搭配下裝)有幾種穿法?(4種)

第二種方案(按下裝搭配上裝)有幾種穿法?(4種)

師小結:不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復、不遺漏的把所有的方法找出來。在今后的學習和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。

<二>排列問題

師:數學廣角樂園到了,不過進門之前我們必須找到開門密碼。(課件出示課件密碼門)

密碼是由1、2、3組成的兩位數.

(1)小組討論擺出不同的兩位數,并記下結果。

(2)學生匯報交流(老師根據學生的回答,點擊課件展示密碼)

(3)生生相互評價。方法一:每次拿出兩張數字卡片能擺出不同的兩位數;

方法二:固定十位上的數字,交換個位數字得到不同的兩位數;

方法三:固定個位上的數字,交換十位數字得到不同的兩位數.

師小結:三種方法雖然不同,但都能正確并有序地擺出6個不同的兩位數,同學們可以用自己喜歡的方法.

三、課堂實踐,鞏固新知。

1、乒乓球賽場次安排。

師:我們先去活動樂園看看,這兒正好有乒乓球比賽呢.(課件出示情境圖)

(l)老師提出要求:每兩個運動員之間打一場球賽,一共要比幾場?

(2)學生獨立思考.

(3)指名學生匯報.規

2、路線選擇。(課件展示游玩景點圖)

師:我們去公園看看吧。途中要經過游戲樂園。

(l)師引導觀察:從活動樂園到游戲樂園有幾條路線?哪幾條?(甲,乙兩條)從游戲樂園去公園有幾條路線?哪幾條?(A,B,C三條)(根據學生的回答課件展示)

從活動樂園到時公園到底有幾種不同的走法?

(2)學生獨立思索后小組交流。

(3)全班同學互相交流。

3、照像活動。

師:我們來到公園,這兒的景色真不錯,大家照幾張像吧.

師提出要求:攝影師要求三名同學站成一排照像,每小組根據每次合影人數(雙人照或三人照)設計排列方案,由組長作好活動記錄。

(1)小組活動,老師參與小組活動。

(2)各小組展示記錄方案。

(3)師生共同評價。

4、欣賞照片.

師:在同學們照像的同時,小麗一家三口人也正在照像呢,看看她們是怎樣照的.(課件展示照片集欣賞)

四、總結

今天的游玩到此結束,同學們互相握手告別好嗎?如果小組里的四個同學每兩人握一次手,一共要握幾次手?

高中數學教案最新模板篇2

【考綱要求】

了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質。

【自學質疑】

1.雙曲線 的 軸在 軸上, 軸在 軸上,實軸長等于 ,虛軸長等于 ,焦距等于 ,頂點坐標是 ,焦點坐標是 ,

漸近線方程是 ,離心率 ,若點 是雙曲線上的點,則 , 。

2.又曲線 的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是

3.經過兩點 的雙曲線的標準方程是 。

4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。

5.與雙曲線 有公共的漸近線,且經過點 的雙曲線的方程為

【例題精講】

1.雙曲線的離心率等于 ,且與橢圓 有公共焦點,求該雙曲線的方程。

2.已知橢圓具有性質:若 是橢圓 上關于原點對稱的兩個點,點 是橢圓上任意一點,當直線 的斜率都存在,并記為 時,那么 之積是與點 位置無關的定值,試對雙曲線 寫出具有類似特性的性質,并加以證明。

3.設雙曲線 的半焦距為 ,直線 過 兩點,已知原點到直線 的距離為 ,求雙曲線的離心率。

【矯正鞏固】

1.雙曲線 上一點 到一個焦點的距離為 ,則它到另一個焦點的距離為 。

2.與雙曲線 有共同的漸近線,且經過點 的雙曲線的一個焦點到一條漸近線的距離是 。

3.若雙曲線 上一點 到它的右焦點的距離是 ,則點 到 軸的距離是

4.過雙曲線 的左焦點 的直線交雙曲線于 兩點,若 。則這樣的直線一共有 條。

【遷移應用】

1. 已知雙曲線 的焦點到漸近線的距離是其頂點到漸近線距離的2倍,則該雙曲線的離心率

2. 已知雙曲線 的焦點為 ,點 在雙曲線上,且 ,則點 到 軸的距離為 。

3. 雙曲線 的焦距為

4. 已知雙曲線 的一個頂點到它的一條漸近線的距離為 ,則

5. 設 是等腰三角形, ,則以 為焦點且過點 的雙曲線的離心率為 .

6. 已知圓 。以圓 與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件的雙曲線的標準方程為

高中數學教案最新模板篇3

在預習教材中的例4的基礎上,證明:若分別是橢圓的左、右焦點,則橢圓上任一點p()到焦點的距離(焦半徑),同時思考當橢圓的焦點在y軸上時,結論如何?(此題意圖是引導學生去進一步探究,為進一步研究橢圓的性質做準備)

本堂課是在學生學習了橢圓的定義、標準方程的基礎上,根據方程研究曲線的性質。按照學生的認知特點,改變了教材中原有安排順序,引導學生從觀察課前預習所作的圖形入手,從分析對稱開始,循序漸進進行探究。由教師點撥、指導,學生研究、合作、體驗來完成。

本節課借助多媒體手段創設問題情境,指導學生研究式學習和體驗式學習(興趣是前提)。例如導入,通過“神州五號”這樣一個人們關注的話題引入,有利于激發學生的興趣。再如,這節課是學生第一次利用曲線方程研究曲線性質,為了解決這一難點,在課前設計中改變了教材原有研究順序,讓學生從觀察一個具體橢圓圖形入手,從觀察到對稱性這一宏觀特征開始研究,符合學生的認知特點,調動了學生主動參與教學的積極性,使他們進行自主探究與合作交流,親身體驗幾何性質的形成與論證過程,變靜態教學為動態教學。在研究范圍這一性質時,課前設計中,只要學生能根據不等式知識解出就可以了,但學生采用了多種方法研究,這時教師沒有打斷他的思路,而是引導幫助他研究,鼓勵學生創新,從而也實現了以學生為主,為學生服務。

在離心率這一性質的教學中,充分利用多媒體手段,以輕松愉悅的動畫演示,化解了知識的難點。

但也有不足的地方:在對具體例子的觀察分析中,設計的問題過于具體,可能束縛了學生的思維,還沒有放開。還有就是少講多學方面也是我今后教學中努力的方向。

感悟:新課堂是活動的課堂,討論、合作交流可課堂,德育教育的課堂,應用現代技術的課堂,因此新教育理念、新課改下的新課堂需要教師和學生一起來培育。

高中數學教案最新模板篇4

各位同仁,各位專家:

我說課的課題是《任意角的三角函數》,內容取自蘇教版高中實驗教科書《數學》第四冊第1。2節

先對教材進行分析

教學內容:任意角三角函數的定義、定義域,三角函數值的符號。

地位和作用:任意角的三角函數是本章教學內容的基本概念對三角內容的整體學習至關重要。同時它又為平面向量、解析幾何等內容的學習作必要的準備,通過這部分內容的學習,又可以幫助學生更加深入理解函數這一基本概念。所以這個內容要認真探討教材,精心設計過程。

教學重點:任意角三角函數的定義

教學難點:正確理解三角函數可以看作以實數為自變量的函數、初中用邊長比值來定義轉變為坐標系下用坐標比值定義的觀念的轉換以及坐標定義的合理性的理解;

學情分析:

學生已經掌握的內容,學生學習能力

1。初中學生已經學習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見的知識和求法。

2。我們南山區經過多年的初中課改,學生已經具備較強的自學能力,多數同學對數學的學習有相當的興趣和積極性。

3。在探究問題的能力,合作交流的意識等方面發展不夠均衡,尚有待加強必須在老師一定的指導下才能進行

針對對教材內容重難點的和學生實際情況的分析我們制定教學目標如下

知識目標:

(1)任意角三角函數的定義;三角函數的定義域;三角函數值的符號,

能力目標:

(1)理解并掌握任意角的三角函數的定義;

(2)正確理解三角函數是以實數為自變量的函數;

(3)通過對定義域,三角函數值的符號的推導,提高學生分析探究解決問題的能力。

德育目標:

(1)學習轉化的思想,(2)培養學生嚴謹治學、一絲不茍的科學精神;

針對學生實際情況為達到教學目標須精心設計教學方法

教法學法:溫故知新,逐步拓展

(1)在復習初中銳角三角函數的定義的基礎上一步一步擴展內容,發展新知識,形成新的概念;

(2)通過例題講解分析,逐步引出新知識,完善三角定義

運用多媒體工具

(1)提高直觀性增強趣味性。

教學過程分析

總體來說,由舊及新,由易及難,

逐步加強,逐步推進

先由初中的直角三角形中銳角三角函數的定義

過度到直角坐標系中銳角三角函數的定義

再發展到直角坐標系中任意角三角函數的定義

給定定義后通過應用定義又逐步發現新知識拓展完善定義。

具體教學過程安排

引入:復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

由學生回答

SinA=對邊/斜邊=BC/AB

cosA=對邊/斜邊=AC/AB

tanA=對邊/斜邊=BC/AC

逐步拓展:在高中我們已經建立了直角坐標系,把“定義媒介”從直角三角形改為平面直角坐標系。

我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里,那么三角函數的定義能否也放到坐標系去研究呢?

引導學生發現B的坐標和邊長的關系。進一步啟發他們發現由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數的定義發展到用終邊上任一點的坐標來表示,從而銳角三角函數可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數,便考慮放在直角坐標中進行合理進行定義了

從而得到

知識點一:任意一個角的三角函數的定義

提醒學生思考:由于相似比相等,對于確定的角A,這三個比值的大小和P點在角的終邊上的位置無關。

精心設計例題,引出新內容深化概念,完善定義

例1已知角A的終邊經過P(2,—3),求角A的三個三角函數值

(此題由學生自己分析獨立動手完成)

例題變式1,已知角A的大小是30度,由定義求角A的三個三角函數值

結合變式我們發現三個三角函數值的大小與角的大小有關,只會隨角的大小而變化,符合當初函數的定義,而我們又一直稱呼為三角函數,

提出問題:這三個新的定義確實問是函數嗎?為什么?

從而引出函數極其定義域

由學生分析討論,得出結論

知識點二:三個三角函數的定義域

同時教師強調:由于弧度制使角和實數建立了一一對應關系,所以三角函數是以實數為自變量的函數

例題變式2,已知角A的終邊經過P(—2a,—3a)(a不為0),求角A的三個三角函數值

解答中需要對變量的正負即角所在象限進行討論,讓學生意識到三角函數值的正負與角所在象限有關,從而導出第三個知識點

知識點三:三角函數值的正負與角所在象限的關系

由學生推出結論,教師總結符號記憶方法,便于學生記憶

例題2:已知A在第二象限且sinA=0。2求cosA,tanA

求cosA,tanA

綜合練習鞏固提高,更為下節的同角關系式打下基礎

拓展,如果不限制A的象限呢,可以留作課外探討

小結回顧課堂內容

課堂作業和課外作業以加強知識的記憶和理解

課堂作業P161,2,4

(學生演板,后集體討論修訂答案同桌討論,由學生回答答案)

課后分層作業(有利于全體學生的發展)

必作P231(2),5(2),6(2)(4)選作P233,4

板書設計(見PPT)

高中數學教案最新模板篇5

一.教學目標:

1.知識與技能

(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的交集與并集

(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集

(3)能使用venn圖表達集合的運算,體會直觀圖示對理解抽象概念的作用

2.過程與方法

學生通過觀察和類比,借助venn圖理解集合的基本運算

3.情感.態度與價值觀

(1)進一步樹立數形結合的思想

(2)進一步體會類比的作用

(3)感受集合作為一種語言,在表示數學內容時的簡潔和準確

二.教學重點.難點

重點:交集與并集,全集與補集的概念

難點:理解交集與并集的概念,符號之間的區別與聯系

三.學法與教學用具

1.學法:學生借助venn圖,通過觀察、類比、思考、交流和討論等,理解集合的基本運算

2.教學用具:投影儀

四.教學思路

(一)創設情景,揭示課題

問題1:我們知道,實數有加法運算。類比實數的加法運算,集合是否也可以“相加”呢?

請同學們考察下列各個集合,你能說出集合c與集合a、b之間的關系嗎?

引導學生通過觀察,類比、思考和交流,得出結論。教師強調集合也有運算,這就是我們本節課所要學習的內容。

(二)研探新知

l.并集

—般地,由所有屬于集合a或屬于集合b的元素所組成的集合,稱為集合a與b的并集

記作:a∪b

讀作:a并b

其含義用符號表示為:

用venn圖表示如下:

請同學們用并集運算符號表示問題1中a,b,c三者之間的關系

練習、檢查和反饋

(1)設a={4,5,6,8),b={3,5,7,8),求a∪b

(2)設集合

讓學生獨立完成后,教師通過檢查,進行反饋,并強調:

(1)在求兩個集合的并集時,它們的公共元素在并集中只能出現一次

(2)對于表示不等式解集的集合的運算,可借助數軸解題

2.交集

(1)思考:求集合的并集是集合間的一種運算,那么,集合間還有其他運算嗎?

請同學們考察下面的問題,集合a、b與集合c之間有什么關系?

②b={是新華中學20--年9月入學的高一年級同學},c={是新華中學20--年9月入學的高一年級女同學}

教師組織學生思考、討論和交流,得出結論,從而得出交集的定義;

一般地,由屬于集合a且屬于集合b的所有元素組成的集合,稱為a與b的交集

記作:a∩b

讀作:a交b

其含義用符號表示為:

接著教師要求學生用venn圖表示交集運算

(2)練習、檢查和反饋

①設平面內直線上點的集合為,直線上點的集合為,試用集合的運算表示的位置關系

②學校里開運動會,設a={是參加一百米跑的同學},b={是參加二百米跑的同學},c={是參加四百米跑的同學},學校規定,在上述比賽中,每個同學最多只能參加兩項比賽,請你用集合的運算說明這項規定,并解釋集合運算a∩b與a∩c的含義

學生獨立練習,教師檢查,作個別指導,并對學生中存在的問題進行反饋和糾正

(三)學生自主學習,閱讀理解

1.教師引導學生閱讀教材第10~11頁中有關補集的內容,并思考回答下例問題:

(1)什么叫全集?

(2)補集的含義是什么?用符號如何表示它的含義?用venn圖又表示?

(3)已知集合

(4)設s={是至少有一組對邊平行的四邊形},a={是平行四邊形},b={是菱形},c={是矩形},求。

在學生閱讀、思考的過程中,教師作個別指導,待學生經過閱讀和思考完后,請學生回答上述問題,并及時給予評價

(四)歸納整理,整體認識

1.通過對集合的學習,同學對集合這種語言有什么感受?

2.并集、交集和補集這三種集合運算有什么區別?

(五)作業

1.課外思考:對于集合的基本運算,你能得出哪些運算規律?

2.請你舉出現實生活中的一個實例,并說明其并集,交集和補集的現實含義

3.書面作業:教材第12頁習題1.1a組第7題和b組第4題

高中數學教案最新模板篇6

●知識梳理

函數的綜合應用主要體現在以下幾方面:

1.函數內容本身的相互綜合,如函數概念、性質、圖象等方面知識的綜合.

2.函數與其他數學知識點的綜合,如方程、不等式、數列、解析幾何等方面的內容與函數的綜合.這是高考主要考查的內容.

3.函數與實際應用問題的綜合.

●點擊雙基

1.已知函數f(x)=lg(2x-b)(b為常數),若x[1,+)時,f(x)0恒成立,則

A.b1B.b1C.b1D.b=1

解析:當x[1,+)時,f(x)0,從而2x-b1,即b2x-1.而x[1,+)時,2x-1單調增加,

b2-1=1.

答案:A

2.若f(x)是R上的減函數,且f(x)的圖象經過點A(0,3)和B(3,-1),則不等式f(x+1)-12的解集是___________________.

解析:由f(x+1)-12得-2

又f(x)是R上的減函數,且f(x)的圖象過點A(0,3),B(3,-1),

f(3)

答案:(-1,2)

●典例剖析

【例1】取第一象限內的點P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差數列,1,y1,y2,2依次成等比數列,則點P1、P2與射線l:y=x(x0)的關系為

A.點P1、P2都在l的上方B.點P1、P2都在l上

C.點P1在l的下方,P2在l的上方D.點P1、P2都在l的下方

剖析:x1=+1=,x2=1+=,y1=1=,y2=,∵y1

P1、P2都在l的下方.

答案:D

【例2】已知f(x)是R上的偶函數,且f(2)=0,g(x)是R上的奇函數,且對于xR,都有g(x)=f(x-1),求f(20__)的值.

解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),

故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=

g(x-3)=f(x-4),也即f(x+4)=f(x),xR.

f(x)為周期函數,其周期T=4.

f(20__)=f(4500+2)=f(2)=0.

評述:應靈活掌握和運用函數的奇偶性、周期性等性質.

【例3】函數f(x)=(m0),x1、x2R,當x1+x2=1時,f(x1)+f(x2)=.

(1)求m的值;

(2)數列{an},已知an=f(0)+f()+f()++f()+f(1),求an.

解:(1)由f(x1)+f(x2)=,得+=,

4+4+2m=[4+m(4+4)+m2].

∵x1+x2=1,(2-m)(4+4)=(m-2)2.

4+4=2-m或2-m=0.

∵4+42=2=4,

而m0時2-m2,4+42-m.

m=2.

(2)∵an=f(0)+f()+f()++f()+f(1),an=f(1)+f()+f()++f()+f(0).

2an=[f(0)+f(1)]+[f()+f()]++[f(1)+f(0)]=+++=.

an=.

深化拓展

用函數的思想處理方程、不等式、數列等問題是一重要的思想方法.

【例4】函數f(x)的定義域為R,且對任意x、yR,有f(x+y)=f(x)+f(y),且當x0時,f(x)0,f(1)=-2.

(1)證明f(x)是奇函數;

(2)證明f(x)在R上是減函數;

(3)求f(x)在區間[-3,3]上的最大值和最小值.

(1)證明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.從而有f(x)+f(-x)=0.

f(-x)=-f(x).f(x)是奇函數.

(2)證明:任取x1、x2R,且x10.f(x2-x1)0.

-f(x2-x1)0,即f(x1)f(x2),從而f(x)在R上是減函數.

(3)解:由于f(x)在R上是減函數,故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.從而最大值是6,最小值是-6.

深化拓展

對于任意實數x、y,定義運算x__y=ax+by+cxy,其中a、b、c是常數,等式右邊的運算是通常的加法和乘法運算.現已知1__2=3,2__3=4,并且有一個非零實數m,使得對于任意實數x,都有x__m=x,試求m的值.

提示:由1__2=3,2__3=4,得

b=2+2c,a=-1-6c.

又由x__m=ax+bm+cmx=x對于任意實數x恒成立,

b=0=2+2c.

c=-1.(-1-6c)+cm=1.

-1+6-m=1.m=4.

答案:4.

●闖關訓練

夯實基礎

1.已知y=f(x)在定義域[1,3]上為單調減函數,值域為[4,7],若它存在反函數,則反函數在其定義域上

A.單調遞減且最大值為7B.單調遞增且最大值為7

C.單調遞減且最大值為3D.單調遞增且最大值為3

解析:互為反函數的兩個函數在各自定義區間上有相同的增減性,f-1(x)的值域是[1,3].

答案:C

2.關于x的方程x2-4x+3-a=0有三個不相等的實數根,則實數a的值是___________________.

解析:作函數y=x2-4x+3的圖象,如下圖.

由圖象知直線y=1與y=x2-4x+3的圖象有三個交點,即方程x2-4x+3=1也就是方程x2-4x+3-1=0有三個不相等的實數根,因此a=1.

答案:1

3.若存在常數p0,使得函數f(x)滿足f(px)=f(px-)(xR),則f(x)的一個正周期為__________.

解析:由f(px)=f(px-),

令px=u,f(u)=f(u-)=f[(u+)-],T=或的整數倍.

答案:(或的整數倍)

4.已知關于x的方程sin2x-2sinx-a=0有實數解,求a的取值范圍.

解:a=sin2x-2sinx=(sinx-1)2-1.

∵-11,0(sinx-1)24.

a的范圍是[-1,3].

5.記函數f(x)=的定義域為A,g(x)=lg[(x-a-1)(2a-x)](a1)的定義域為B.

(1)求A;

(2)若BA,求實數a的取值范圍.

解:(1)由2-0,得0,

x-1或x1,即A=(-,-1)[1,+).

(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.

∵a1,a+12a.B=(2a,a+1).

∵BA,2a1或a+1-1,即a或a-2.

而a1,1或a-2.

故當BA時,實數a的取值范圍是(-,-2][,1).

培養能力

6.(理)已知二次函數f(x)=x2+bx+c(b0,cR).

若f(x)的定義域為[-1,0]時,值域也是[-1,0],符合上述條件的函數f(x)是否存在?若存在,求出f(x)的表達式;若不存在,請說明理由.

解:設符合條件的f(x)存在,

∵函數圖象的對稱軸是x=-,

又b0,-0.

①當-0,即01時,

函數x=-有最小值-1,則

或(舍去).

②當-1-,即12時,則

(舍去)或(舍去).

③當--1,即b2時,函數在[-1,0]上單調遞增,則解得

綜上所述,符合條件的函數有兩個,

f(x)=x2-1或f(x)=x2+2x.

(文)已知二次函數f(x)=x2+(b+1)x+c(b0,cR).

若f(x)的定義域為[-1,0]時,值域也是[-1,0],符合上述條件的函數f(x)是否存在?若存在,求出f(x)的表達式;若不存在,請說明理由.

解:∵函數圖象的對稱軸是

x=-,又b0,--.

設符合條件的f(x)存在,

①當--1時,即b1時,函數f(x)在[-1,0]上單調遞增,則

②當-1-,即01時,則

(舍去).

綜上所述,符合條件的函數為f(x)=x2+2x.

7.已知函數f(x)=x+的定義域為(0,+),且f(2)=2+.設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.

(1)求a的值.

(2)問:PMPN是否為定值?若是,則求出該定值;若不是,請說明理由.

(3)設O為坐標原點,求四邊形OMPN面積的最小值.

解:(1)∵f(2)=2+=2+,a=.

(2)設點P的坐標為(x0,y0),則有y0=x0+,x00,由點到直線的距離公式可知,PM==,PN=x0,有PMPN=1,即PMPN為定值,這個值為1.

(3)由題意可設M(t,t),可知N(0,y0).

∵PM與直線y=x垂直,kPM1=-1,即=-1.解得t=(x0+y0).

又y0=x0+,t=x0+.

S△OPM=+,S△OPN=x02+.

S四邊形OMPN=S△OPM+S△OPN=(x02+)+1+.

當且僅當x0=1時,等號成立.

此時四邊形OMPN的面積有最小值1+.

探究創新

8.有一塊邊長為4的正方形鋼板,現對其進行切割、焊接成一個長方體形無蓋容器(切、焊損耗忽略不計).有人應用數學知識作了如下設計:如圖(a),在鋼板的四個角處各切去一個小正方形,剩余部分圍成一個長方體,該長方體的高為小正方形邊長,如圖(b).

(1)請你求出這種切割、焊接而成的長方體的最大容積V1;

(2)由于上述設計存在缺陷(材料有所浪費),請你重新設計切、焊方法,使材料浪費減少,而且所得長方體容器的容積V2V1.

解:(1)設切去正方形邊長為x,則焊接成的長方體的底面邊長為4-2x,高為x,

V1=(4-2x)2x=4(x3-4x2+4x)(0

V1=4(3x2-8x+4).

令V1=0,得x1=,x2=2(舍去).

而V1=12(x-)(x-2),

又當x時,V10;當

當x=時,V1取最大值.

(2)重新設計方案如下:

如圖①,在正方形的兩個角處各切下一個邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;如圖③,將圖②焊成長方體容器.

新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積V2=321=6,顯然V2V1.

故第二種方案符合要求.

●思悟小結

1.函數知識可深可淺,復習時應掌握好分寸,如二次函數問題應高度重視,其他如分類討論、探索性問題屬熱點內容,應適當加強.

2.數形結合思想貫穿于函數研究的各個領域的全部過程中,掌握了這一點,將會體會到函數問題既千姿百態,又有章可循.

●教師下載中心

教學點睛

數形結合和數形轉化是解決本章問題的重要思想方法,應要求學生熟練掌握用函數的圖象及方程的曲線去處理函數、方程、不等式等問題.

拓展題例

【例1】設f(x)是定義在[-1,1]上的奇函數,且對任意a、b[-1,1],當a+b0時,都有0.

(1)若ab,比較f(a)與f(b)的大小;

(2)解不等式f(x-)

(3)記P={xy=f(x-c)},Q={xy=f(x-c2)},且PQ=,求c的取值范圍.

解:設-1x1

0.

∵x1-x20,f(x1)+f(-x2)0.

f(x1)-f(-x2).

又f(x)是奇函數,f(-x2)=-f(x2).

f(x1)

f(x)是增函數.

(1)∵ab,f(a)f(b).

(2)由f(x-)

-.

不等式的解集為{x-}.

(3)由-11,得-1+c1+c,

P={x-1+c1+c}.

由-11,得-1+c21+c2,

Q={x-1+c21+c2}.

∵PQ=,

1+c-1+c2或-1+c1+c2,

解得c2或c-1.

【例2】已知函數f(x)的圖象與函數h(x)=x++2的圖象關于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)x+ax,且g(x)在區間(0,2]上為減函數,求實數a的取值范圍.

(理)若g(x)=f(x)+,且g(x)在區間(0,2]上為減函數,求實數a的取值范圍.

解:(1)設f(x)圖象上任一點坐標為(x,y),點(x,y)關于點A(0,1)的對稱點(-x,2-y)在h(x)的圖象上.

2-y=-x++2.

y=x+,即f(x)=x+.

(2)(文)g(x)=(x+)x+ax,

即g(x)=x2+ax+1.

g(x)在(0,2]上遞減-2,

a-4.

(理)g(x)=x+.

∵g(x)=1-,g(x)在(0,2]上遞減,

1-0在x(0,2]時恒成立,

即ax2-1在x(0,2]時恒成立.

∵x(0,2]時,(x2-1)max=3,

a3.

【例3】在4月份(共30天),有一新款服裝投放某專賣店銷售,日銷售量(單位:件)f(n)關于時間n(130,nN__)的函數關系如下圖所示,其中函數f(n)圖象中的點位于斜率為5和-3的兩條直線上,兩直線的交點的橫坐標為m,且第m天日銷售量最大.

(1)求f(n)的表達式,及前m天的銷售總數;

(2)按規律,當該專賣店銷售總數超過400件時,社會上流行該服裝,而日銷售量連續下降并低于30件時,該服裝的流行會消失.試問該服裝在社會上流行的天數是否會超過10天?并說明理由.

解:(1)由圖形知,當1m且nN__時,f(n)=5n-3.

由f(m)=57,得m=12.

f(n)=

前12天的銷售總量為

5(1+2+3++12)-312=354件.

(2)第13天的銷售量為f(13)=-313+93=54件,而354+54400,

從第14天開始銷售總量超過400件,即開始流行.

設第n天的日銷售量開始低于30件(1221.

從第22天開始日銷售量低于30件,

即流行時間為14號至21號.

該服裝流行時間不超過10天.

高中數學教案最新模板篇7

教學目標:

1.結合實際問題情景,理解分層抽樣的必要性和重要性;

2.學會用分層抽樣的方法從總體中抽取樣本;

3.并對簡單隨機抽樣、系統抽樣及分層抽樣方法進行比較,揭示其相互關系.

教學重點:

通過實例理解分層抽樣的方法.

教學難點:

分層抽樣的步驟.

教學過程:

一、問題情境

1.復習簡單隨機抽樣、系統抽樣的概念、特征以及適用范圍.

2.實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學生活動

能否用簡單隨機抽樣或系統抽樣進行抽樣,為什么?

指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.

由于樣本的容量與總體的個體數的比為100∶2500=1∶25,

所以在各年級抽取的個體數依次是,,,即40,32,28.

三、建構數學

1.分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

說明:①分層抽樣時,由于各部分抽取的個體數與這一部分個體數的比等于樣本容量與總體的個體數的比,每一個個體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應用.

2.三種抽樣方法對照表:

類別

共同點

各自特點

相互聯系

適用范圍

簡單隨機抽樣

抽樣過程中每個個體被抽取的概率是相同的

從總體中逐個抽取

總體中的個體數較少

系統抽樣

將總體均分成幾個部分,按事先確定的規則在各部分抽取

在第一部分抽樣時采用簡單隨機抽樣

總體中的個體數較多

分層抽樣

將總體分成幾層,分層進行抽取

各層抽樣時采用簡單隨機抽樣或系統

總體由差異明顯的幾部分組成

3.分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分.

(2)確定比例:計算各層的個體數與總體的個體數的比.

(3)確定各層應抽取的樣本容量.

(4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統抽樣的方法抽取),綜合每層抽樣,組成樣本.

四、數學運用

1.例題.

例1(1)分層抽樣中,在每一層進行抽樣可用_________________.

(2)①教育局督學組到學校檢查工作,臨時在每個班各抽調2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現欲從中抽出8人研討進一步改進教和學;

③某班元旦聚會,要產生兩名“幸運者”.

對這三件事,合適的抽樣方法為()

A.分層抽樣,分層抽樣,簡單隨機抽樣

B.系統抽樣,系統抽樣,簡單隨機抽樣

C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣

D.系統抽樣,分層抽樣,簡單隨機抽樣

例2某電視臺在因特網上就觀眾對某一節目的喜愛程度進行調查,參加調查的總人數為12000人,其中持各種態度的人數如表中所示:

很喜愛

喜愛

一般

不喜愛

2435

4567

3926

1072

電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調查,應怎樣進行抽樣?

解:抽取人數與總的比是60∶12000=1∶200,

則各層抽取的人數依次是12.175,22.835,19.63,5.36,

取近似值得各層人數分別是12,23,20,5.

然后在各層用簡單隨機抽樣方法抽取.

答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

數分別為12,23,20,5.

說明:各層的抽取數之和應等于樣本容量,對于不能取整數的情況,取其近似值.

(3)某學校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學校在校務公開方面的某意見,擬抽取一個容量為20的樣本.

分析:(1)總體容量較小,用抽簽法或隨機數表法都很方便.

(2)總體容量較大,用抽簽法或隨機數表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數相同,可用系統抽樣.

(3)由于學校各類人員對這一問題的看法可能差異較大,所以應采用分層抽樣方法.

五、要點歸納與方法小結

本節課學習了以下內容:

1.分層抽樣的概念與特征;

2.三種抽樣方法相互之間的區別與聯系.

高中數學教案最新模板篇8

一、教材分析

1、教材的地位和作用:

數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面, 數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

2、教學目標

根據教學大綱的要求和學生的實際水平,確定了本次課的教學目標

a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入“數學建模”的思想方法并能運用。

b在能力上:培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

c在情感上:通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

3、教學重點和難點

根據教學大綱的要求我確定本節課的教學重點為:

①等差數列的概念。

②等差數列的通項公式的推導過程及應用。

由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節課的一個難點。同時,學生對“數學建模”的思想方法較為陌生,因此用數學思想解決實際問題是本節課的另一個難點。

二、學情分析對于三中的高一學生,知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。

二、教法分析

針對高中生這一思維特點和心理特征,本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。

三、學法指導在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

四、教學程序

本節課的教學過程由(一)復習引入(二)新課探究(三)應用例解(四)反饋練習(五)歸納小結(六)布置作業,六個教學環節構成。

(一)復習引入:

1.從函數觀點看,數列可看作是定義域為__________對應的一列函數值,從而數列的通項公式也就是相應函數的______ 。(N﹡;解析式)

通過練習1復習上節內容,為本節課用函數思想研究數列問題作準備。

2. 小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為: 100,98,96,94,92 ①

3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為 5,10,15,20,25 ②

通過練習2和3 引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。

(二) 新課探究

1、由引入自然的給出等差數列的概念:

如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。強調:

① “從第二項起”滿足條件;

②公差d一定是由后項減前項所得;

③每一項與它的前一項的差必須是同一個常數(強調“同一個常數” );

在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:

an+1-an=d (n≥1)

同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。

1. 9 ,8,7,6,5,4,……;√ d=-1

2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

其中第一個數列公差<0, 第二個數列公差>0,第三個數列公差=0

由此強調:公差可以是正數、負數,也可以是0

高中數學教案最新模板篇9

教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。

教學過程:

一、閱讀下列語句:

1)全體自然數0,1,2,3,4,5,

2)代數式

3)拋物線上所有的點

4)今年本校高一(1)(或(2))班的全體學生

5)本校實驗室的所有天平

6)本班級全體高個子同學

7)著名的科學家

上述每組語句所描述的對象是否是確定的?

二、

1)集合:

2)集合的元素:

3)集合按元素的個數分,可分為1)__________2)_________

三、集合中元素的三個性質:

1)___________2)___________3)_____________

四、元素與集合的關系:1)____________2)____________

五、特殊數集專用記號:

1)非負整數集(或自然數集)______2)正整數集_____3)整數集_______4)有理數集______5)實數集_____6)空集____

六、集合的表示方法:

1)

2)

3)

七、例題講解:

例1、中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是()

a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形

例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?

1)地球上的四大洋構成的集合;

2)函數的全體值的集合;

3)函數的全體自變量的集合;

4)方程組解的集合;

5)方程解的集合;

6)不等式的解的集合;

7)所有大于0且小于10的奇數組成的集合;

8)所有正偶數組成的集合;

例3、用符號或填空:

1)______q,0_____n,_____z,0_____

2)______,_____

3)3_____,

4)設,,則

例4、用列舉法表示下列集合;

1.

2.

3.

4.

例5、用描述法表示下列集合

1.所有被3整除的數

2.圖中陰影部分點(含邊界)的坐標的集合

課堂練習:

例6、設含有三個實數的集合既可以表示為,也可以表示為,則的值等于___________

例7、已知:,若中元素至多只有一個,求的取值范圍。

思考題:數集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。

小結:

作業班級姓名學號

1.下列集合中,表示同一個集合的是()

a.m=,n=b.m=,n=

c.m=,n=d.m=,n=

2.m=,x=,y=,,.則()

a.b.c.d.

3.方程組的解集是____________________。

4.在(1)難解的題目,(2)方程在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________。

5.設集合a=,b=,

c=,d=,e=。

其中有限集的個數是____________。

6.設,則集合中所有元素的和為

7.設x,y,z都是非零實數,則用列舉法將所有可能的值組成的集合表示為

8.已知f(x)=x2-ax+b,(a,br),a=,b=,

若a=,試用列舉法表示集合b=

9.把下列集合用另一種方法表示出來:

(1)(2)

(3)(4)

10.設a,b為整數,把形如a+b的一切數構成的集合記為m,設,試判斷x+y,x-y,xy是否屬于m,說明理由。

11.已知集合a=

(1)若a中只有一個元素,求a的值,并求出這個元素;

(2)若a中至多只有一個元素,求a的取值集合。

12.若-3,求實數a的值。

高中數學教案最新模板篇10

2。2。1等差數列學案

一、預習問題:

1、等差數列的定義:一般地,如果一個數列從起,每一項與它的前一項的差等于同一個,那么這個數列就叫等差數列,這個常數叫做等差數列的,通常用字母表示。

2、等差中項:若三個數組成等差數列,那么A叫做與的,

即或。

3、等差數列的.單調性:等差數列的公差時,數列為遞增數列;時,數列為遞減數列;時,數列為常數列;等差數列不可能是。

4、等差數列的通項公式:。

5、判斷正誤:

①1,2,3,4,5是等差數列;()

②1,1,2,3,4,5是等差數列;()

③數列6,4,2,0是公差為2的等差數列;()

④數列是公差為的等差數列;()

⑤數列是等差數列;()

⑥若,則成等差數列;()

⑦若,則數列成等差數列;()

⑧等差數列是相鄰兩項中后項與前項之差等于非零常數的數列;()

⑨等差數列的公差是該數列中任何相鄰兩項的差。()

6、思考:如何證明一個數列是等差數列。

二、實戰操作:

例1、(1)求等差數列8,5,2,的第20項。

(2)是不是等差數列中的項?如果是,是第幾項?

(3)已知數列的公差則

例2、已知數列的通項公式為,其中為常數,那么這個數列一定是等差數列嗎?

例3、已知5個數成等差數列,它們的和為5,平方和為求這5個數。

高中數學教案最新模板篇11

[核心必知]

1、預習教材,問題導入

根據以下提綱,預習教材P6~P9,回答下列問題、

(1)常見的程序框有哪些?

提示:終端框(起止框),輸入、輸出框,處理框,判斷框、

(2)算法的基本邏輯結構有哪些?

提示:順序結構、條件結構和循環結構、

2、歸納總結,核心必記

(1)程序框圖

程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形、在程序框圖中,一個或幾個程序框的組合表示算法中的一個步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執行順序、

(2)常見的程序框、流程線及各自表示的功能

圖形符號名稱功能

終端框(起止框)表示一個算法的起始和結束

輸入、輸出框表示一個算法輸入和輸出的信息

處理框(執行框)賦值、計算

判斷框判斷某一條件是否成立,成立時在出口處標明“是”或“Y”;不成立時標明“否”或“N”

流程線連接程序框

○連接點連接程序框圖的兩部分

(3)算法的基本邏輯結構

①算法的三種基本邏輯結構

算法的三種基本邏輯結構為順序結構、條件結構和循環結構,盡管算法千差萬別,但都是由這三種基本邏輯結構構成的

②順序結構

順序結構是由若干個依次執行的步驟組成的這是任何一個算法都離不開的基本結構,用程序框圖表示為:

[問題思考]

(1)一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束嗎?

提示:由程序框圖的概念可知一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束、

(2)順序結構是任何算法都離不開的基本結構嗎?

提示:根據算法基本邏輯結構可知順序結構是任何算法都離不開的基本結構、

[課前反思]

通過以上預習,必須掌握的幾個知識點:

(1)程序框圖的概念:

(2)常見的程序框、流程線及各自表示的功能:

(3)算法的.三種基本邏輯結構:

(4)順序結構的概念及其程序框圖的表示:

問題背景:計算1×2+3×4+5×6+…+99×100。

[思考1]能否設計一個算法,計算這個式子的值。

提示:能。

[思考2]能否采用更簡潔的方式表述上述算法過程。

提示:能,利用程序框圖。

[思考3]畫程序框圖時應遵循怎樣的規則?

名師指津:

(1)使用標準的框圖符號。

(2)框圖一般按從上到下、從左到右的方向畫。

(3)除判斷框外,其他程序框圖的符號只有一個進入點和一個退出點,判斷框是一個具有超過一個退出點的程序框。

(4)在圖形符號內描述的語言要非常簡練清楚。

(5)流程線不要忘記畫箭頭,因為它是反映流程執行先后次序的,如果不畫出箭頭就難以判斷各框的執行順序。

高中數學教案最新模板篇12

數列的極限教學設計

西南位育中學肖添憶

一、教材分析

《數列的極限》為滬教版第七章第七節第一課時內容,是一節概念課。極限概念是數學中最重要和最基本的概念之一,因為極限理論是微積分學中的基礎理論,它的產生建立了有限與無限、常量數學與變量數學之間的橋梁,從而彌補和完善了微積分在理論上的欠缺。本節后續內容如:數列極限的運算法則、無窮等比數列各項和的求解也要用到數列極限的運算與性質來推導,所以極限概念的掌握至關重要。

課本在內容展開時,以觀察n??時無窮等比數列an?列an?qn,(q?1)與an?1的發展趨勢為出發點,結合數n21的發展趨勢,從特殊到一般地給出數列極限的描述性定義。在n由定義給出兩個常用極限。但引入部分的表述如“無限趨近于0,但它永遠不會成為0”、“不管n取值有多大,點(n,an)始終在橫軸的上方”可能會造成學生對“無限趨近”的理解偏差。

二、學情分析

通過第七章前半部分的學習,學生已經掌握了數列的有關概念,以及研究一些特殊數列的方法。但對于學生來說,數列極限是一個全新的內容,學生的思維正處于由經驗型抽象思維向理論型抽象思維過渡的階段。

由于已有的學習經驗與不當的推理類比,學生在理解“極限”、“無限趨近”時可能產生偏差,比如認為極限代表著一種無法逾越的程度,或是近似值。這與數學中“極限”的含義相差甚遠。在學習數列極限之前,又曾多次利用“無限趨近”描述反比例函數、指數函數、對數函數的圖像特征,這又與數列中“無限趨近”的含義有所差異,學生往往會因為常數列能達到某一個常數而否定常數列存在極限的事實。

三、教學目標與重難點教學目標:

1、通過數列極限發展史的介紹,感受數學知識的形成與發展,更好地把握極限概念的來龍去脈;

2、經歷極限定義在漫長時期內發展的過程,體會數學家們從概念發現到完善所作出的努力,從數列的變化趨勢,正確理解數列極限的概念和描述性定義;

3、會根據數列極限的意義,由數列的通項公式來考察數列的極限;掌握三個常用極限。教學重點:理解數列極限的概念

教學難點:正確理解數列極限的描述性定義

四、教學策略分析

在問題引入時著重突出“萬世不竭”與“講臺可以走到”在認知上的矛盾,激發學生的學習興趣與求知欲,并由此引出本節課的學習內容。在極限概念形成時,結合極限概念的發展史展開教學,讓學生意識到數學理論不是一成不變的,而是不斷發展變化的。數學的歷史發展過程與學生的認知過程有著一定的相似性,學生在某些概念上的進展有時與數學史上的概念進展平行。比如部分學生的想法與許多古希臘的數學家一樣,認為無限擴大的正多邊形不會與圓周重合,它的周長始終小于其外接圓的周長。教師通過梳理極限發展史上的代表性觀點,介紹概念的發展歷程以及前人對此的一系列觀點,能幫助學生發現自己可能也存在著類似于前人的一些錯誤想法。對數學發現的過程以認知角度加以分析,有助于學生學習數學家的思維方式,了解數學概念的發展,進而建構推理過程,使學生發生概念轉變。在課堂練習診斷部分,不但要求回答問題,還需對選擇原因進行辨析,進而強化概念的正確理解。

五、教學過程提綱與設計意圖1.問題引入

讓一名學生從距離講臺一米處朝講臺走動,每次都移動距講臺距離的一半,在黑板上寫出表示學生到講臺距離的數列。這名學生是否能走到講臺呢?類比“一尺之捶,日取其半,萬世不竭”,莊子認為這樣的過程是永遠不會完結的,然而“講臺永遠走不到”這一結果顯然與事實不同,要回答這一矛盾,讓我們看看歷史上的數學家們是如何思考的。【設計意圖】

改編自芝諾悖論的引入問題,與莊子的“一尺之捶”產生了認知沖突,激發學生的學習興趣與求知欲,并引出本節課的學習內容

2.極限概念的發展與完善

極限概念的發展經歷了三個階段:從早期以“割圓術”“窮竭法”為代表的樸素極限思想,到極限概念被提出后因“無窮小量是否為0”的爭論而引發的質疑,再經由柯西、魏爾斯特拉斯等人的工作以及實數理論的形成,嚴格的極限理論至此才真正建立。【設計意圖】

教師引導學生梳理極限發展史上的代表性觀點,了解數學家們提出觀點的時代背景,對照反思自己的想法,發現自己可能也存在著類似于前人的一些錯誤想法。教師在比較概念發展史上被否定的觀點與現今數學界認可的觀點時,會使學生產生認知沖突。從而可能使學生發生概念轉變,拋棄不正確的、不完整的、受限的想法,接受新的概念。在數學教學中,結合數學史展開教學可以讓學生意識到數學理論不是一成不變的,而是不斷發展變化的,從而提升學生概念轉變的動機。

3.數列極限的概念

極限思想的產生最早可追溯于中國古代。極限理論的完善出于社會實踐的需要,不是哪一名數學家苦思冥想得出,而是幾代人奮斗的結果。極限的嚴格定義經歷了相當漫長的時期才得以完善,它是人類智慧高度文明的體現,反映了數學發展的辯證規律。今天的主題,極限的定義,援引的便是柯西對于極限的闡述。

定義:在n無限增大的變化過程中,如果無窮數列{an}中的an無限趨近于一個常數A,那么A叫做數列{an}的極限,或叫做數列{an}收斂于A,記作liman?A,讀作“n趨向于

n??無窮大時,an的極限等于A”。

在數列極限的定義中,可用an-A無限趨近于0來描述an無限趨近于A。

如前闡述,柯西版本的極限定義雖然不是最完美的,但作為擺脫幾何直觀的首次嘗試,也是歷史上一個較為成功的版本,在歷史上的地位頗高。有時,我們也稱其為數列極限的描述性定義。

【設計意圖】

通過比較歷史上不同觀點下的極限定義,教師呈現數列極限的描述性定義,分析該定義的歷史意義,讓學生進一步明確數列極限的含義。4.課堂練習診斷

由數列極限的定義得到三個常用數列的極限:(1)limC?C(C為常數);

n??(2)lim1?0(n?N__);n??nnn??(3)當q判斷下列數列是否存在極限,若存在求出其極限,若不存在請說明理由

20--20--(1)an?;

nsinn?;n(3)1,1,1,1,?,1(2)an?(4)an????4(1?n?1000)

?4(n?1001)?1?1-,n為奇數(5)an??n

??1,n為偶數注:

(1)、(2)考察三個常用極限

(3)考查學生是否能清楚認識到數列極限概念是基于無窮項數列的背景下探討的。當項數無限增大時,數列的項若無限趨近于一個常數,則認為數列的極限存在。因此,數列極限可以看作是數列的一種趨于穩定的發展趨勢。有窮數列的項數是有限的,因而并不存在極限這個概念。

(4)引用柯西的觀點,解釋此處無限趨近的含義,是指隨著數列項數的增加,數列的項與某一常數要多接近就有多接近,由此得出結論:數列極限與前有限項無關且無窮常數數列存在極限的。

(5)擴充對三種趨近方式的理解:小于A趨近、大于A趨近和擺動趨近。本題中的數列沒有呈現出以上三種方式的任意一種。避免學生將趨近誤解為項數與常數間的差距不斷縮小。練習若A=0.9+0.09+0.009+0.0009+...,則以下對A的描述正確的是_____.A、A是小于1的最大正數

B、A的精確值為1C、A的近似值為1

選擇此選項的原因是_________①由于A的小數位都是9,找不到比A大但比1小的數;

②A是由無限多個正數的和組成,它們可以一直不斷得加下去,但總小于2;

③A表示的數是數列0.9,0.99,0.999,0.9999,...的極限;

④1與A的差等于0.00…01。

注:此題是為考查學生對于無窮小量和極限概念的理解。由極限概念的發展史可以看出,數學家們曾長時期陷入對無窮小概念理解的誤區中,極大地阻礙了對極限概念的理解。學生學習極限概念時可能也會遇到類似的誤區。

練習順次連接△ABC各邊中點A1、B1、C1,得到△A1B1C1。取△A1B1C1各邊中點A2、B2、C2并順次連接又得到一個新三角形△A2B2C2。再按上述方法一直進行下去,那么最終得到的圖形是_________.A、一個點

B、一個三角形

C、不確定

選擇此選項的原因是_________.①

無限次操作后所得三角形的面積無限趨近于0但不可能等于0。②

當操作一定次數后,三角形的三點會重合。

該項操作可以無限多次進行下去,因而總能作出類似的三角形。

無限次操作后所得三角形的三個頂點會趨向于一點。

注:此題從無限觀的角度考察學生對極限概念的的理解。學生容易忽視極限概念中的實無限,他們在視覺上采用無窮疊加的形式,但是會受最后一項的慣性思維,導致采用潛無限的思辨方式。所謂實無限是指把無限的整體本身作為一個現成的單位,是可以自我完成的過程或無窮整體。相對地,潛無限是指把無限看作永遠在延伸著的,一種變化著成長著不斷產生出來的東西。它永遠處在構造中,永遠完成不了,是潛在的,而不是實在的。持有潛無限觀點的學生在理解極限概念時,會將極限理解為是一個漸進過程,或是一個不可達到的極值。

通過習題,分析總結以下三個注意點:

(1)數列{an}有極限必須是一個無窮數列,但無窮數列不一定有極限存在;

1}可以說隨著n的無限增大,n1數列的項與-1會越來越接近,但這種接近不是無限趨近,所以不能說lim??1;

n??n(2)“無限趨近”不能用“越來越接近”代替,例如數列{(3)數列{an}趨向極限A的過程可有多種呈現形式。

【設計意圖】

通過例題與選項原因的分析,消除關于數列極限理解的三類誤區:

第一類是將數列極限等同于如下的三種概念:漸近線、最大限度或是近似值。第二類是學生對于數列趨向于極限方式的錯誤認知。第三類是對于無限的錯誤認知。

5.課堂小結

極限的描述性定義與注意點三個常用的極限

6.作業布置

1>任課老師布置的其他作業

2>學習魏爾斯特拉斯的數列極限定義,并用該定義證明習題的第一第二小問【設計意圖】

通過與數列極限相關的延伸問題,完善極限概念的體系,為學生創設課后自主探究平臺,感受靜態定義中凝結的數學家的智慧。

高中數學教案最新模板篇13

教學目標:

(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

(2)進一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節內容的教學,培養學生分析問題和轉化的能力.

教學重點、難點:求曲線的方程.

教學用具:計算機.

教學方法:啟發引導法,討論法.

教學過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學生思考并回答.教師強調.

2.坐標法和解析幾何的意義、基本問題.

對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質.

事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節課就初步研究曲線方程的求法.

【問題】

如何根據已知條件,求出曲線的方程.

【實例分析】

例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

首先由學生分析:根據直線方程的知識,運用點斜式即可解決.

解法一:易求線段 的中點坐標為(1,3),

由斜率關系可求得l的斜率為

于是有

即l的方程為

分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據是什么,有證明嗎?

(通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據就是定義中的兩條).

證明:(1)曲線上的點的坐標都是這個方程的解.

設 是線段 的垂直平分線上任意一點,則

將上式兩邊平方,整理得

這說明點 的坐標 是方程 的解.

(2)以這個方程的解為坐標的點都是曲線上的點.

設點 的坐標 是方程①的任意一解,則

到 、 的距離分別為

所以 ,即點 在直線 上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內容我們會發現一個有趣的現象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合

由兩點間的距離公式,點所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現了曲線方程定義中點集與對應的思想.因此是個好方法.

讓我們用這個方法試解如下問題:

例2:點 與兩條互相垂直的直線的距離的積是常數 求點 的軌跡方程.

分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

求解過程略.

【概括總結】通過學生討論,師生共同總結:

分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:

首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

(1)建立適當的坐標系,用有序實數對例如 表示曲線上任意一點 的坐標;

(2)寫出適合條件 的點 的集合

;

(3)用坐標表示條件 ,列出方程 ;

(4)化方程 為最簡形式;

(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

下面再看一個問題:

例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關系.

解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

由距離公式,點 適合的條件可表示為

將①式 移項后再兩邊平方,得

化簡得

由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

【練習鞏固】

題目:在正三角形 內有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

根據條件 ,代入坐標可得

化簡得

由于題目中要求點 在三角形內,所以 ,在結合①式可進一步求出 、 的范圍,最后曲線方程可表示為

【小結】師生共同總結:

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

【作業】課本第72頁練習1,2,3;

高中數學教案最新模板篇14

一、課前檢測

1.在數列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求數列{bn}的前n項的和.

解:由已知得:an=1n+1(1+2+3++n)=n2,

bn=2n2n+12=8(1n-1n+1)數列{bn}的前n項和為

Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.

2.已知在各項不為零的數列中,。

(1)求數列的通項;

(2)若數列滿足,數列的前項的和為,求

解:(1)依題意,,故可將整理得:

所以即

,上式也成立,所以

(2)

二、知識梳理

(一)前n項和公式Sn的定義:Sn=a1+a2+an。

(二)數列求和的方法(共8種)

5.錯位相減法:適用于差比數列(如果等差,等比,那么叫做差比數列)即把每一項都乘以的公比,向后錯一項,再對應同次項相減,轉化為等比數列求和。

如:等比數列的前n項和就是用此法推導的.

解讀:

6.累加(乘)法

解讀:

7.并項求和法:一個數列的前n項和中,可兩兩結合求解,則稱之為并項求和.

形如an=(-1)nf(n)類型,可采用兩項合并求。

解讀:

8.其它方法:歸納、猜想、證明;周期數列的求和等等。

解讀:

三、典型例題分析

題型1錯位相減法

例1求數列前n項的和.

解:由題可知{}的通項是等差數列{2n}的通項與等比數列{}的通項之積

設①

②(設制錯位)

①-②得(錯位相減)

變式訓練1(20__昌平模擬)設數列{an}滿足a1+3a2+32a3++3n-1an=n3,nN__.

(1)求數列{an}的通項公式;

(2)設bn=nan,求數列{bn}的&39;前n項和Sn.

解:(1)∵a1+3a2+32a3++3n-1an=n3,①

當n2時,a1+3a2+32a3++3n-2an-1=n-13.②

①-②得3n-1an=13,an=13n.

在①中,令n=1,得a1=13,適合an=13n,an=13n.

(2)∵bn=nan,bn=n3n.

Sn=3+232+333++n3n,③

3Sn=32+233+334++n3n+1.④

④-③得2Sn=n3n+1-(3+32+33++3n),

即2Sn=n3n+1-3(1-3n)1-3,Sn=(2n-1)3n+14+34.

小結與拓展:

題型2并項求和法

例2求=1002-992+982-972++22-12

解:=1002-992+982-972++22-12=(100+99)+(98+97)++(2+1)=5050.

變式訓練2數列{(-1)nn}的前20__項的和S2010為(D)

A.-20__B.-1005C.20__D.1005

解:S2010=-1+2-3+4-5++2008-2009+2010

=(2-1)+(4-3)+(6-5)++(2010-2009)=1005.

小結與拓展:

題型3累加(乘)法及其它方法:歸納、猜想、證明;周期數列的求和等等

例3(1)求之和.

(2)已知各項均為正數的數列{an}的前n項的乘積等于Tn=(nN__),

,則數列{bn}的前n項和Sn中最大的一項是(D)

A.S6B.S5C.S4D.S3

解:(1)由于(找通項及特征)

=(分組求和)==

=

(2)D.

變式訓練3(1)(20__福州八中)已知數列則,。答案:100.5000。

(2)數列中,,且,則前20__項的和等于(A)

A.1005B.20__C.1D.0

小結與拓展:

四、歸納與總結(以學生為主,師生共同完成)

以上一個8種方法雖然各有其特點,但總的原則是要善于改變原數列的形式結構,使

其能進行消項處理或能使用等差數列或等比數列的求和公式以及其它已知的基本求和公式來解決,只要很好地把握這一規律,就能使數列求和化難為易,迎刃而解。

高中數學教案最新模板篇15

一、教學內容分析

向量作為工具在數學、物理以及實際生活中都有著廣泛的應用.

本小節的重點是結合向量知識證明數學中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學中的應用.

二、教學目標設計

1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應用,體會從不同角度去看待一些數學問題,使一些數學知識有機聯系,拓寬解決問題的思路.

2、了解構造法在解題中的運用.

三、教學重點及難點

重點:平面向量知識在各個領域中應用.

難點:向量的構造.

四、教學流程設計

五、教學過程設計

一、復習與回顧

1、提問:下列哪些量是向量?

(1)力 (2)功 (3)位移 (4)力矩

2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[說明]復習數量積的有關知識.

二、學習新課

例1(書中例5)

向量作為一種工具,不僅在物理學科中有廣泛的應用,同時它在數學學科中也有許多妙用!請看

例2(書中例3)

證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立.

證法(二)向量法

[說明]本例關鍵引導學生觀察不等式結構特點,構造向量,并發現(等號成立的充要條件是)

例3(書中例4)

[說明]本例的關鍵在于構造單位圓,利用向量數量積的兩個公式得到證明.

二、鞏固練習

1、如圖,某人在靜水中游泳,速度為 km/h.

(1)如果他徑直游向河對岸,水的流速為4 km/h,他實際沿什么方向前進?速度大小為多少?

答案:沿北偏東方向前進,實際速度大小是8 km/h.

(2) 他必須朝哪個方向游才能沿與水流垂直的方向前進?實際前進的速度大小為多少?

答案:朝北偏西方向前進,實際速度大小為km/h.

三、課堂小結

1、向量在物理、數學中有著廣泛的應用.

2、要學會從不同的角度去看一個數學問題,是數學知識有機聯系.

四、作業布置

1、書面作業:課本P73, 練習8.4 4

165358
領取福利

微信掃碼領取福利

微信掃碼分享