通過編寫教案,教師可以明確教學目標、教學內容和教學計劃,以便更好地組織教學,從而提高教學質量和效率。怎樣才能寫好高考數學教案大全?這里給大家提供高考數學教案大全,方便大家學習。
高考數學教案大全篇1
1、教材(教學內容)
本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用、
2、設計理念
本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標、
3、教學目標
知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題、
過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用、
情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美、
4、重點難點
重點:任意角三角函數的定義、
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透、
5、學情分析
學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念、在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構、
6、教法分析
“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構、這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用、
7、學法分析
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。
高考數學教案大全篇2
教學目的:
1、使理解線段的垂直平分線的性質定理及逆定理,掌握這兩個定理的關系并會用這兩個定理解決有關幾何問題。
2、了解線段垂直平分線的軌跡問題。
3、結合教學內容培養學生的動作、形象和抽象。
教學重點:
線段的垂直平分線性質定理及逆定理的引入證明及運用。
教學難點:
線段的垂直平分線性質定理及逆定理的關系。
教學關鍵:
1、垂直平分線上所有的點和線段兩端點的距離相等。
2、到線段兩端點的距離相等的所有點都在這條線段的垂直平分線上。
教具:
投影儀及投影膠片。
教學過程:
一、提問
1、角平分線的性質定理及逆定理是什么?
2、怎樣做一條線段的垂直平分線?
二、新課
1、請同學們在練習本上做線段AB的垂直平分線EF(請一名同學在黑板上做)。
2、在EF上任取一點P,連結PA、PB量出PA=?,PB=?引導學生觀察這兩個值有什么關系?
通過學生的觀察、分析得出結果PA=PB,再取一點P試一試仍然有PA=PB,引導學生猜想EF上的所有點和點A、點B的距離都相等,再請同學把這一結論敘述成命題(用幻燈展示)。
定理:線段的垂直平分線上的點和這條線段的兩個端點的距離相等。
這個命題,是我們通過作圖、觀察、猜想得到的`,還得在理論上加以證明是真命題才能做為定理。
已知:如圖,直線EF⊥AB,垂足為C,且AC=CB,點P在EF上
求證:PA=PB
如何證明PA=PB學生分析得出只要證RTΔPCA≌RTΔPCB
證明:∵PC⊥AB(已知)
∴∠PCA=∠PCB(垂直的定義)
在ΔPCA和ΔPCB中
∴ΔPCA≌ΔPCB(SAS)
即:PA=PB(全等三角形的對應邊相等)。
反過來,如果PA=PB,P1A=P1B,點P,P1在什么線上?
過P,P1做直線EF交AB于C,可證明ΔPAP1≌PBP1(SSS)
∴EF是等腰三角型ΔPAB的頂角平分線
∴EF是AB的垂直平分線(等腰三角形三線合一性質)
∴P,P1在AB的垂直平分線上,于是得出上述定理的逆定理(啟發學生敘述)(用幻燈展示)。
逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
根據上述定理和逆定理可以知道:直線MN可以看作和兩點A、B的距離相等的所有點的集合。
線段的垂直平分線可以看作是和線段兩個端點距離相等的所有點的集合。
三、舉例(用幻燈展示)
例:已知,如圖ΔABC中,邊AB,BC的垂直平分線相交于點P,求證:PA=PB=PC。
證明:∵點P在線段AB的垂直平分線上
∴PA=PB
同理PB=PC
∴PA=PB=PC
由例題PA=PC知點P在AC的垂直平分線上,所以三角形三邊的垂直平分線交于一點P,這點到三個頂點的距離相等。
四、小結
正確的運用這兩個定理的關鍵是區別它們的條件與結論,加強證明前的分析,找出證明的途徑。定理的作用是可證明兩條線段相等或點在線段的垂直平分線上。
高考數學教案大全篇3
(1)棱柱:
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
(3)棱臺:
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等
表示:用各頂點字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。
高考數學教案大全篇4
教學目標:
1.理解流程圖的選擇結構這種基本邏輯結構.
2.能識別和理解簡單的框圖的功能.
3.能運用三種基本邏輯結構設計流程圖以解決簡單的問題.
教學方法:
1.通過模仿、操作、探索,經歷設計流程圖表達求解問題的過程,加深對流程圖的感知.
2.在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構.
教學過程:
一、問題情境
1.情境:
某鐵路客運部門規定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學生活動
學生討論,教師引導學生進行表達.
解算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構數學
1.選擇結構的概念:
先根據條件作出判斷,再決定執行哪一種
操作的結構稱為選擇結構.
如圖:虛線框內是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執行,否則執行.
2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判
斷的不同情況進行不同的操作,這類問題的實現就要用到選擇結構的設計;
(2)選擇結構也稱為分支結構或選取結構,它要先根據指定的條件進行判斷,再由判斷的結果決定執行兩條分支路徑中的某一條;
(3)在上圖的選擇結構中,只能執行和之一,不可能既執行,又執
行,但或兩個框中可以有一個是空的,即不執行任何操作;
(4)流程圖圖框的形狀要規范,判斷框必須畫成菱形,它有一個進入點和
兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
高考數學教案大全篇5
一、目標
1、知識與技能
(1)理解流程圖的順序結構和選擇結構。
(2)能用字語言表示算法,并能將算法用順序結構和選擇結構表示簡單的流程圖
2、過程與方法
學生通過模仿、操作、探索、經歷設計流程圖表達解決問題的過程,理解流程圖的結構。
3、情感、態度與價值觀
學生通過動手作圖,用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想——程序化思想,在歸納概括中培養學生的邏輯思維能力。
二、重點、難點
重點:算法的順序結構與選擇結構。
難點:用含有選擇結構的流程圖表示算法。
三、學法與教學用具
學法:學生通過動手作圖,用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經歷設計流程圖表達解決問題的過程。進而學習順序結構和選擇結構表示簡單的流程圖。
教學用具:尺規作圖工具,多媒體。
四、教學思路
(一)、問題引入揭示題
例1尺規作圖,確定線段的一個5等分點。
要求:同桌一人作圖,一人寫算法,并請學生說出答案。
提問:用字語言寫出算法有何感受?
引導學生體驗到:顯得冗長,不方便、不簡潔。
教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構成一張圖即流程圖表示算法。
本節要學習的是順序結構與選擇結構。
右圖即是同流程圖表示的算法。
(二)、觀察類比理解題
1、投影介紹流程圖的符號、名稱及功能說明。
符號符號名稱功能說明
終端框算法開始與結束
處理框算法的各種處理操作
判斷框算法的各種轉移
輸入輸出框輸入輸出操作
指向線指向另一操作
2、講授順序結構及選擇結構的概念及流程圖
(1)順序結構
依照步驟依次執行的一個算法
流程圖:
(2)選擇結構
對條進行判斷決定后面的步驟的結構
流程圖:
3、用自然語言表示算法與用流程圖表示算法的比較
(1)半徑為r的圓的面積公式當r=10時寫出計算圓的面積的算法,并畫出流程圖。
解:
算法(自然語言)
①把10賦與r
②用公式求s
③輸出s
流程圖
(2)已知函數對于每輸入一個X值都得到相應的函數值,寫出算法并畫流程圖。
算法:(語言表示)
①輸入X值
②判斷X的范圍,若,用函數Y=x+1求函數值;否則用Y=2-x求函數值
③輸出Y的值
流程圖
小結:含有數學中需要分類討論的或與分段函數有關的問題,均要用到選擇結構。
學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)
(三)模仿操作經歷題
1、用流程圖表示確定線段AB的一個16等分點
2、分析講解例2;
分析:
思考:有多少個選擇結構?相應的流程圖應如何表示?
流程圖:
(四)歸納小結鞏固題
1、順序結構和選擇結構的模式是怎樣的?
2、怎樣用流程圖表示算法。
(五)練習P992
(六)作業P991
高考數學教案大全篇6
各位評委、各位專家,大家好!今天,我說課的內容是人民教育出版社全日制普通高級中學教科書(必修)《數學》第一章第五節“一元二次不等式解法”。
下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。
(二)教學內容
本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。
二、教學目標分析
根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:
知識目標——理解“三個二次”的&39;關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。
要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。
四、教法與學法分析
(一)學法指導
教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。
(二)教法分析
本節課設計的指導思想是:現代認知心理學——建構主義學習理論。
建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設計
本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。
(一)創設情景,引出“三個一次”的關系
本節課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。
為此,我設計了以下幾個問題:
1、請同學們解以下方程和不等式:
①2x-7=0;②2x-70;③2x-70
學生回答,我板書。
2、我指出:2x-70和2x-70的解實際上只需利用不等式基本性質就容易得到。
3、接著我提出:我們能否利用不等式的基本性質來解一元二次不等式呢?學生可能感到很困惑。
4、為此,我引入一次函數y=2x-7,借助動畫從圖象上直觀認識方程和不等式的解,得出以下三組重要關系:
①2x-7=0的解恰是函數y=2x-7的圖象與x軸
交點的橫坐標。
②2x-70的解集正是函數y=2x-7的圖象
在x軸的上方的點的橫坐標的集合。
③2x-70的解集正是函數y=2x-7的圖象
在x軸的下方的點的橫坐標的集合。
三組關系的得出,實際上讓學生找到了利用“一次函數的圖象”來解一元一次方程和一元一次不等式的方法。讓學生看到了解決一元二次不等式的希望,大大激發了學生解決新問題的興趣。此時,學生很自然聯想到利用函數y=x2-x-6的圖象來求不等式x2-x-60的解集。
(二)比舊悟新,引出“三個二次”的關系
為此我引導學生作出函數y=x2-x-6的圖象,按照“看一看說一說問一問”的思路進行探究。
看函數y=x2-x-6的圖象并說出:
①方程x2-x-6=0的解是
x=-2或x=3;
②不等式x2-x-60的解集是
{x-2,或x3};
③不等式x2-x-60的解集是
{x-23}。
此時,學生已經沖出了困惑,找到了利用二次函數的圖象來解一元二次不等式的方法。
學生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數y=x2-x-6變為y=ax2+bx+c(a0),那么圖象與x軸的位置關系又怎樣呢?(學生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學們討論:ax2+bx+c0與ax2+bx+c0的解集與函數y=ax2+bx+c的圖象有怎樣的關系?
(三)歸納提煉,得出“三個二次”的關系
1、引導學生根據圖象與x軸的相對位置關系,寫出相關不等式的解集。
2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經討論之后,有的學生得出:將二次項系數由負化正,轉化為上述模式求解,教師應予以強調;也有的學生提出畫出相應的二次函數圖象,根據圖象寫出解集,教師應給予肯定。)
(四)應用新知,熟練掌握一元二次不等式的解集
借助二次函數的圖象,得到一元二次不等式的解集,學生形成了感性認識,為鞏固所學知識,我們一起來完成以下例題:
例1、解不等式2x2-3x-20
解:因為Δ0,方程2x2-3x-2=0的解是
x1=,x2=2
所以,不等式的解集是
{x,或x2}
例1的解決達到了兩個目的:一是鞏固了一元二次不等式解集的應用;二是規范了一元二次不等式的解題格式。
下面我們接著學習課本例2。
例2解不等式-3x2+6x2
課本例2的出現恰當好處,一方面突出了“對于二次項系數是負數(即a0)的一元二次不等式,可以先把二次項系數化為正數,再求解”;另一方面,學生對此例的解答極易出現寫錯解集(如出現“或”與“且”的錯誤)。
通過例1、例2的解決,學生與我一起總結了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。
例3解不等式4x2-4x+10
例4解不等式-x2+2x-30
分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學生練習,教師巡視、指導,講評學生完成情況,尋找學生中的閃光點,給予熱情表揚。
4道例題,具有典型性、層次性和學生的可接受性。為了避免學生學后“一團亂麻”、“一盤散沙”的局面,我和學生一起總結。
(五)總結
解一元二次不等式的“四部曲”:
(1)把二次項的系數化為正數
(2)計算判別式Δ
(3)解對應的一元二次方程
(4)根據一元二次方程的根,結合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集
(六)作業布置
為了使所有學生鞏固所學知識,我布置了“必做題”;又為學有余力者留有自由發展的空間,我布置了“探究題”。
(1)必做題:習題1.5的1、3題
(2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實數k的取值范圍。
(七)板書設計
一元二次不等式解法(1)
五、教學效果評價
本節課立足課本,著力挖掘,設計合理,層次分明。以“三個一次關系→三個二次關系→一元二次不等式解法”為主線,以“從形到數,從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學思想上既注重知識形成過程的教學,還特別突出學生學習方法的指導,探究能力的訓練,創新精神的培養,引導學生發現數學的美,體驗求知的樂趣。
高考數學教案大全篇7
一、教材分析
1.教材地位和作用
在初中,學生已經學習了三角形的邊和角的基本關系;同時在必修4,學生也學習了三角函數、平面向量等內容。這些為學生學習正弦定理提供了堅實的基礎。正弦定理是初中解直角三角形的延伸,是揭示三角形邊、角之間數量關系的重要公式,本節內容同時又是學生學習解三角形,幾何計算等后續知識的基礎,而且在物理學等其它學科、工業生產以及日常生活等常常涉及解三角形的問題。依據教材的上述地位和作用,我確定如下教學目標和重難點
2.教學目標
(1)知識目標:
①引導學生發現正弦定理的內容,探索證明正弦定理的方法;
②簡單運用正弦定理解三角形、初步解決某些與測量和幾何計算有關的實際問題。
(2)能力目標:
①通過對直角三角形邊角數量關系的研究,發現正弦定理,體驗用特殊到一般的思想方法發現數學規律的過程。
②在利用正弦定理來解三角形的過程中,逐步培養應用數學知識來解決社會實際問題的能力。
(3)情感目標:通過設立問題情境,激發學生的學習動機和好奇心理,使其主動參與雙邊交流活動。通過對問題的提出、思考、解決培養學生自信、自立的優良心理品質。通過教師對例題的講解培養學生良好的學習習慣及科學的學習態度。3.教學的重﹑難點
教學重點:正弦定理的內容,正弦定理的證明及基本應用;教學難點:正弦定理的探索及證明;
教學中為了達到上述目標,突破上述重難點,我將采用如下的教學方法與手段
二、教學方法與手段
1.教學方法
教學過程中以教師為主導,學生為主體,創設和諧、愉悅教學環境。根據本節課內容和學生認知水平,我主要采用啟導法、感性體驗法、多媒體輔助教學。
2.學法指導
學情調動:學生在初中已獲得了直角三角形邊角關系的初步知識,正因如此學生在心理上會提出如何解決斜三角形邊角關系的疑問。
學法指導:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,讓學生在問題情景中學習,再通過對實例進行具體分析,進而觀察歸納、演練鞏固,由具體到抽象,逐步實現對新知識的理解深化。
3.教學手段
利用多媒體展示圖片,極大的吸引學生的注意力,活躍課堂氣氛,調動學生參與解決問題的積極性。為了提高課堂效率,便于學生動手練習,我把本節課的例題、課堂練習制作成一張習題紙,課前發給學生。
下面我講解如何運用上述教學方法和手段開展教學過程
三、教學過程設計
教學流程:
引出課題
引出新知
歸納方法
鞏固新知
布置作業
四、總結分析:
現代教育心理學的研究認為,有效的性質概念教學是建立在學生已有知識結構基礎上的,因此我在教學設計過程中注意了:㈠在學生已有知識結構和新性質概念間尋找“最近發展區”.㈡引導學生通過同化,順應掌握新概念。
㈢設法走出“性質概念一帶而過,演習作業鋪天蓋地”的誤區,促使自己與學生一起走進“重視探究、重視交流、重視過程”的新天地。
我認為本節課的設計應遵循教學的基本原則;注重對學生思維的發展;貫徹教師對本節內容的理解;體現“學思結合﹑學用結合”原則。希望對學生的思維品質的培養﹑數學思想的建立﹑心理品質的優化起到良好的作用.
設計意圖:我的板書設計的指導原則:簡明直觀,重點突出。本節課的板書教學重點放在黑板的正中間,為了能加深學生對正弦定理以及其應用的認識,把例題放在中間,以期全班同學都能看得到。
謝謝!
高考數學教案大全篇8
[學習目標]
(1)會用坐標法及距離公式證明Cα+β;
(2)會用替代法、誘導公式、同角三角函數關系式,由Cα+β推導Cα-β、Sα±β、Tα±β,切實理解上述公式間的關系與相互轉化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題.
[學習重點]
兩角和與差的正弦、余弦、正切公式
[學習難點]
余弦和角公式的推導
[知識結構]
1.兩角和的余弦公式是三角函數一章和、差、倍公式系列的基礎.其公式的證明是用坐標法,利用三角函數定義及平面內兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(證明過程見課本)
2.通過下面各組數的值的比較:①cos(30°-90°)與cos30°-cos90°②sin(30°+60°)和sin30°+sin60°.我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ.但不排除一些特例,如sin(0+α)=sin0+sinα=sinα.
3.當α、β中有一個是的整數倍時,應首選誘導公式進行變形.注意兩角和與差的三角函數是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數的特例.
4.關于公式的正用、逆用及變用
高考數學教案大全篇9
教學目標:
1.理解流程圖的選擇結構這種基本邏輯結構.
2.能識別和理解簡單的框圖的功能.
3.能運用三種基本邏輯結構設計流程圖以解決簡單的問題.
教學方法:
1.通過模仿、操作、探索,經歷設計流程圖表達求解問題的過程,加深對流程圖的感知.
2.在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構.
教學過程:
一、問題情境
1.情境:
某鐵路客運部門規定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學生活動
學生討論,教師引導學生進行表達.
解算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構數學
1.選擇結構的概念:
先根據條件作出判斷,再決定執行哪一種
操作的結構稱為選擇結構.
如圖:虛線框內是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執行,否則執行.
2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判
斷的不同情況進行不同的操作,這類問題的實現就要用到選擇結構的設計;
(2)選擇結構也稱為分支結構或選取結構,它要先根據指定的條件進行判斷,再由判斷的結果決定執行兩條分支路徑中的某一條;
(3)在上圖的選擇結構中,只能執行和之一,不可能既執行,又執
行,但或兩個框中可以有一個是空的,即不執行任何操作;
(4)流程圖圖框的形狀要規范,判斷框必須畫成菱形,它有一個進入點和
兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
高考數學教案大全篇10
教學準備
教學目標
數列求和的綜合應用
教學重難點
數列求和的綜合應用
教學過程
典例分析
3.數列{an}的前n項和Sn=n2-7n-8,
(1)求{an}的通項公式
(2)求{an}的前n項和Tn
4.等差數列{an}的公差為,S100=145,則a1+a3+a5+…+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四個根組成一個首項為的等差數列,則m-n=
6.數列{an}是等差數列,且a1=2,a1+a2+a3=12
(1)求{an}的通項公式
(2)令bn=anxn,求數列{bn}前n項和公式
7.四數中前三個數成等比數列,后三個數成等差數列,首末兩項之和為21,中間兩項之和為18,求此四個數
8.在等差數列{an}中,a1=20,前n項和為Sn,且S10=S15,求當n為何值時,Sn有值,并求出它的值
.已知數列{an},an∈N__,Sn=(an+2)2
(1)求證{an}是等差數列
(2)若bn=an-30,求數列{bn}前n項的最小值
0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N__)
(1)設f(x)的圖象的頂點的橫坐標構成數列{an},求證數列{an}是等差數列
(2設f(x)的圖象的頂點到x軸的距離構成數列{dn},求數列{dn}的前n項和sn.
11.購買一件售價為5000元的商品,采用分期付款的辦法,每期付款數相同,購買后1個月第1次付款,再過1個月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復利計算(上月利息要計入下月本金),那么每期應付款多少?(精確到1元)
12.某商品在最近100天內的價格f(t)與時間t的
函數關系式是f(t)=
銷售量g(t)與時間t的函數關系是
g(t)=-t/3+109/3(0≤t≤100)
求這種商品的日銷售額的值
注:對于分段函數型的應用題,應注意對變量x的取值區間的討論;求函數的值,應分別求出函數在各段中的值,通過比較,確定值
高考數學教案大全篇11
教學準備
教學目標
掌握等差數列與等比數列的性質,并能靈活應用等差(比)數列的性質解決有關等差(比)數列的綜合性問題.
教學重難點
掌握等差數列與等比數列的性質,并能靈活應用等差(比)數列的性質解決有關等差(比)數列的綜合性問題.
教學過程
【示范舉例】
例1:數列是首項為23,公差為整數,
且前6項為正,從第7項開始為負的等差數列
(1)求此數列的公差d;
(2)設前n項和為Sn,求Sn的值;
(3)當Sn為正數時,求n的值.
高考數學教案大全篇12
教學目標:
通過實例,理解冪函數的概念;能區分指數函數與冪函數;會用待定系數法求冪函數的解析式。
教學重難點:
重點從五個具體冪函數中認識冪函數的一些特征.
難點指數函數與冪函數的區別和冪函數解析式的求解.
教學方法與手段:
1.采用師生互動的方式,在教師的引導下,學生通過思考、交流、討論,理解冪函數的定義,體驗自主探索、合作交流的學習方式,充分發揮學生的積極性與主動性.
2.利用投影儀及計算機輔助教學.
教學過程:
函數的完美追求:對于式子,
如果一定,N隨的變化而變化,我們建立了指數函數;
如果一定,隨N的變化而變化,我們建立了對數函數.
設想:如果一定,N隨的變化而變化,是不是也應該確定一個函數呢?
創設情境
請大家看以下問題:
思考:以上問題中的函數有什么共同特征?
引導學生分析歸納概括得出:(1)都是以自變量x為底數;(2)指數為常數;(3)自變量x前的系數為1;(4)只有一項.上述問題中涉及的函數,都是形如的函數.
探究新知
一、冪函數的定義
一般地,形如的函數稱為冪函數,其中是自變量,是常數.
中前面的系數是1,后面沒有其它項.
小試牛刀
判斷下列函數是否為冪函數:
(1),
思考:冪函數與指數函數有什么區別?
二、冪函數與指數函數的對比
高考數學教案大全篇13
一、教材分析
1、本節教材的地位和作用
“基本不等式”是必修5的重點內容,在課本封面上就體現出來了(展示課本和參考書封面)。它是在學完“不等式的性質”、“不等式的解法”及“線性規劃”的基礎上對不等式的進一步研究.在不等式的證明和求最值過程中有著廣泛的應用。求最值又是高考的熱點。同時本節知識又滲透了數形結合、化歸等重要數學思想,有利于培養學生良好的思維品質。
2、教學目標
(1)知識目標:探索基本不等式的證明過程;會用基本不等式解決最值問題。
(2)能力目標:培養學生觀察、試驗、歸納、判斷、猜想等思維能力。?
(3)情感目標:培養學生嚴謹求實的科學態度,體會數與形的和諧統一,領略數學的應用價值,激發學生的學習興趣和勇于探索的精神。
3、教學重點、難點
根據課程標準制定如下的教學重點、難點
重點:應用數形結合的思想理解不等式,并從不同角度探索基本不等式。
難點:基本不等式的內涵及幾何意義的挖掘,用基本不等式求最值。
二、教法說明
本節課借助幾何畫板,使用多媒體輔助進行直觀演示.采用啟發式教學法創設問題情景,激發學生開始嘗試活動.運用生活中的實際例子,讓學生享受解決實際問題的樂趣.課堂上主要采取對比分析;讓學生邊議、邊評;組織學生學、思、練。通過師生和諧對話,使情感共鳴,讓學生的潛能、創造性最大限度發揮,使認知效益最大。讓學生愛學、樂學、會學、學會。
三、學法指導
為更好的貫徹課改精神,合理的對學生進行素質教育,在教學中,始終以學生主體,教師為主導.因此我在教學中讓學生從不同角度去觀察、分析,指導學生解決問題,感受知識的形成過程,培養學生數形結合的意識和能力,讓學生學會學習。
四、教學設計
◆運用2002年國際數學家大會會標引入
◆運用分析法證明基本不等式
◆不等式的幾何解釋
◆基本不等式的應用
1、運用2002年國際數學家大會會標引入
如圖,這是在北京召開的第24屆國際數學家大會會標.會標根據中國古代數學家趙爽的弦圖設計的,顏色的明暗使它看上去象一個風車,代表中國人民熱情好客。(展示風車)
正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,設AE=a,BE=b,則正方形的面積為S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它們的面積之和是S’=_
從圖形中易得,s≥s’,即
問題1:它們有相等的情況嗎?何時相等?
問題2:當a,b為任意實數時,上式還成立嗎?(學生積極思考,通過幾何畫板幫助學生理解)
一般地,對于任意實數a、b,我們有
當且僅當(重點強調)a=b時,等號成立(合情推理)
問題3:你能給出它的證明嗎?(讓學生獨立證明)
設計意圖
(1)運用2002年國際數學家大會會標引入,能讓學生進一步體會中國數學的歷史悠久,感受數學與生活的聯系。
(2)運用此圖標能較容易的觀察出面積之間的關系,引入基本不等式很直觀。
(3)三個思考題為學生創造情景,逐層深入,強化理解.
2、運用分析法證明基本不等式
如果a>0,b>0,
用和分別代替a,b。可以得到
也可寫成
(強調基本不等式成立的前提條件“正”)(演繹推理)
問題4:你能用不等式的性質直接推導嗎?
要證=1GB3①
只要證=2GB3②
要證②,只要證=3GB3③
要證=3GB3③,只要證=4GB3④
顯然,④是成立的.當且僅當a=b時,不等式中的等號成立.
(強調基本不等式取等的條件“等”)
設計意圖
(1)證明過程課本上是以填空形式出現的,學生能夠獨立完成,這也能進一步培養學生的自學能力,符合課改精神;
(2)證明過程印證了不等式的正確性,并能加深學生對基本不等式的理解;
(3)此種證明方法是“分析法”,在選修教材的《推理與證明》一章中會重點講解,此處有必要讓學生初步了解。
3、不等式的幾何解釋
如圖,AB是圓的直徑,C是AB上任一點,AC=a,CB=b,過點C作垂直于AB的弦DE,連AD,BD,則CD=,半徑為
問題5:你能用這個圖得出基本不等式的幾何解釋嗎?(學生積極思考,通過幾何畫板幫助學生理解)
設計意圖
幾何直觀能啟迪思路,幫助理解,因此,借助幾何直觀學習和理解數學,是數學學習中的重要方面。只有做到了直觀上的理解,才是真正的理解。
4、基本不等式的應用
例1.證明
(學生自己證明)
設計意圖
(1)這道例題很簡單,多數學生都會仿照課本上的分析思路重新證明,能夠練習“分析法”證明不等式的過程;
(2)學生能夠加深對基本不等式的理解,a和b不僅僅是一個字母,而是一個符號,它們可以是a、b,也可以是x、y,也可以是一個多項式;
(3)此例不是課本例題,比課本例題簡單,這樣,循序漸進,有利于學生理解不等式的內涵。
例2:(1)把36寫成兩個正數的積,當兩個正數取什么值時,它們的和最小?
(2)把18寫成兩個正數的和,當兩個正數取什么值時,它們的積最大?
(讓學生分組合作、探究完成)
高考數學教案大全篇14
一.教學目標
1.知識技能:了解冪函數定義,掌握一些常見冪函數的圖像及性質和一般冪函數第一象限內圖像特點
2.過程與方法:通過形式來定義冪函數,比較冪函數和指數函數得出其特有的形式特點,觀察圖像歸納總結出其函數性質,數形結合找規律
3.情感、態度和價值觀:函數圖像直接反應函數性質,同樣由函數性質也能大致畫出其圖像,對圖像與性質之間的關系進行探索體會
二.重難點
重點:冪函數的定義,常見冪函數的圖像和性質,一般冪函數第一象限的大致圖像再利用其性質得到整體圖像
難點:其一般的性質分析,再由性質得到一般圖像
三.教學方法和用具
方法:歸納總結,數形結合,分析驗證
用具:幻燈片,幾何畫板,黑板
四.教學過程
(幻燈片見附件)
1.設置問題情境,找出所得函數的共同形式,由形式給出冪函數的定義(幻燈片1?幻燈片2)(板書)
2.從形式上比較指數函數和冪函數的異同(幻燈片3)
3.利用定義的形式,判斷所給函數是否是冪函數,并得出判斷依據(幻燈片4)
4.畫常見的三種冪函數的圖像,再讓學生用描點法畫另兩種,并用幾何畫板驗證(幻燈片5)(幾何畫板)
5.用幾何畫板畫出這五個冪函數的圖像,觀察圖像完成書中冪函數的函數性質的表格,并分析得出更一般的結論(板書)(幾何畫板)
上一篇:2024小學數學教案萬能模板
下一篇:初中英語教案萬能模板范文