国产一区久久精品_性xxxxx_国产精品久久久久无码av_免费观看视频www

好多范文網 haoduofanwen.com,好用的范文大全!

八年級上冊數學第十五章教案

網友投稿 分享 時間: 加入收藏 我要投稿 點贊

八年級上冊數學第十五章教案精選5篇

我們從幼苗長成大樹,卻永遠是您的學生;我不是您最出色的學生,而您卻是我最尊敬的老師。在您的節日里,我要把一份崇高的敬意送給您。這里給大家分享一些關于八年級上冊數學第十五章教案,供大家參考學習。

八年級上冊數學第十五章教案

八年級上冊數學第十五章教案篇1

一、創設情境

在學習與生活中,經常要研究一些數量關系,先看下面的問題.

問題1如圖是某地一天內的氣溫變化圖.

看圖回答:

(1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

(2)這一天中,最高氣溫是多少?最低氣溫是多少?

(3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

(3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

從圖中我們可以看到,隨著時間t(時)的變化,相應地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數量關系呢?

二、探究歸納

問題2銀行對各種不同的存款方式都規定了相應的利率,下表是20__年7月中國工商銀行為“整存整取”的存款方式規定的年利率:

觀察上表,說說隨著存期x的增長,相應的年利率y是如何變化的.

解隨著存期x的增長,相應的年利率y也隨著增長.

問題3收音機刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的.下面是一些對應的數值:

觀察上表回答:

(1)波長l和頻率f數值之間有什么關系?

(2)波長l越大,頻率f就________.

解(1)l與f的乘積是一個定值,即

lf=300000,

或者說.

(2)波長l越大,頻率f就 越小 .

問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關系:S=_________.

利用這個關系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結果填入下表:

由此可以看出,圓的半徑越大,它的面積就_________.

解S=πr2.

圓的半徑越大,它的面積就越大.

在上面的問題中,我們研究了一些數量關系,它們都刻畫了某些變化規律.這里出現了各種各樣的量,特別值得注意的是出現了一些數值會發生變化的量.例如問題1中,刻畫氣溫變化規律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數值.像這樣在某一變化過程中,可以取不同數值的量,叫做變量(variable).

上面各個問題中,都出現了兩個變量,它們互相依賴,密切相關.一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

八年級上冊數學第十五章教案篇2

教材分析

1本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式

1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。

2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。

學情分析

1、在學習本課之前應具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學習者對即將學習的內容已經具備的水平:

在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。

教學目標

(一)教學目標:

1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。

2、會推導完全平方公式,并能運用公式進行簡單的計算。

(二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理

數、實數、代數式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、、不等式、函數等進行描述。

(四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。

(五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。

教學重點和難點

重點:能運用完全平方公式進行簡單的計算。

難點:會推導完全平方公式

教學過程

教學過程設計如下:

〈一〉、提出問題

[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學生回答]分組交流、討論

(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

(1)原式的特點。

(2)結果的項數特點。

(3)三項系數的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關系。

2、[學生回答]總結完全平方公式的語言描述:

兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學生回答]完全平方公式的數學表達式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)

(m+n)2=____________, (m-n)2=_______________,

(-m+n)2=____________, (-m-n)2=______________,

(a+3)2=______________, (-c+5)2=______________,

(-7-a)2=______________, (0.5-a)2=______________.

2、判斷:

( )① (a-2b)2= a2-2ab+b2

( )② (2m+n)2= 2m2+4mn+n2

( )③ (-n-3m)2= n2-6mn+9m2

( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

( )⑥ (-a-2b)2=(a+2b)2

( )⑦ (2a-4b)2=(4a-2b)2

( )⑧ (-5m+n)2=(-n+5m)2

3、一現身手

① (x+y)2 =______________;② (-y-x)2 =_______________;

③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

〈四〉、[學生小結]

你認為完全平方公式在應用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、探險之旅

(1)(-3a+2b)2=________________________________

(2)(-7-2m) 2 =__________________________________

(3)(-0.5m+2n) 2=_______________________________

(4)(3/5a-1/2b) 2=________________________________

(5)(mn+3) 2=__________________________________

(6)(a2b-0.2) 2=_________________________________

(7)(2xy2-3x2y) 2=_______________________________

(8)(2n3-3m3) 2=________________________________

板書設計

完全平方公式

兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

八年級上冊數學第十五章教案篇3

數據的波動

教學目標:

1、經歷數據離散程度的探索過程

2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。

教學重點:會計算某些數據的極差、標準差和方差。

教學難點:理解數據離散程度與三個差之間的關系。

教學準備:計算器,投影片等

教學過程:

一、創設情境

1、投影課本P138引例。

(通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數據離散程度的一個量度極差)

2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統計量。

二、活動與探究

如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿,數據如圖(投影課本159頁圖)

問題:1、丙廠這20只雞腿質量的平均數和極差是多少?

2、如何刻畫丙廠這20只雞腿質量與其平均數的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的差距。

3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?

(在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數據離散程度的量度標準差和方差作鋪墊。

三、講解概念:

方差:各個數據與平均數之差的平方的平均數,記作s2

設有一組數據:x1, x2, x3,,xn,其平均數為

則s2= ,

而s= 稱為該數據的標準差(既方差的算術平方根)

從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩定。

四、做一做

你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規格更好一些?說說你是怎樣算的?

(通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)

五、鞏固練習:課本第172頁隨堂練習

六、課堂小結:

1、怎樣刻畫一組數據的離散程度?

2、怎樣求方差和標準差?

七、布置作業:習題5.5第1、2題。

八年級上冊數學第十五章教案篇4

教學目標:

1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉在現實生活中的應用,能夠靈活運用軸對稱、平移、旋轉的組合,設計出簡單的圖案。

2、能力目標:經歷收集、欣賞、分析、操作和設計的過程,培養學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創新能力。

3、情感體驗點:經歷對典型圖案設計意圖的分析,進一步發展學生的空間觀念,增強審美意識,培養學生積極進取的生活態度。

重點與難點:

重點:靈活運用軸對稱、平移、旋轉……等方法及它們的組合進行的圖案設計。

難點:分析典型圖案的設計意圖。

疑點:在設計的圖案中清晰地表現自己的設計意圖

教具學具準備:

提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

教學過程設計:

1、情境導入:在優美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)

明確在欣賞了圖案后,簡單地復習:平移、旋轉的概念,為下面圖案的設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉適合角度形成(可以讓學生自己說說每個旋轉的角度和旋轉的次數及旋轉中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數),而圖(2)可以通過平移形成。

2、課本

1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

評注:圖案是密鋪圖案的`代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉變換是圖案制作的基本手段。例題解答的關鍵是確定“基本圖案”,然后再運用平移、旋轉關系加以說明,注意旋轉中心可以為圖形上某一特征的點。

評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

(二)課內練習

(1) 以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。

(2) 利用下面提供的基本圖形,用平移、旋轉、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。

(三)議一議

生活中還有那些圖案用到了平移或旋轉?分析其中的一個,并與同伴進行交流。

(四)課時小結

本課時的重點是了解平移、旋轉和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。

通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)

八年級數學上冊教案(五)延伸拓展

進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結合實際背景分析它的設計意圖。

八年級上冊數學第十五章教案篇5

第三十四學時:14.2.1平方差公式

一、學習目標:

1.經歷探索平方差公式的過程。

2.會推導平方差公式,并能運用公式進行簡單的運算。

二、重點難點

重點:平方差公式的推導和應用;

難點:理解平方差公式的結構特征,靈活應用平方差公式。

三、合作學習

你能用簡便方法計算下列各題嗎?

(1)20__×1999(2)998×1002

導入新課:計算下列多項式的積.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。

即:(a+b)(a—b)=a2—b2

四、精講精練

例1:運用平方差公式計算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:計算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

隨堂練習

計算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小結

(a+b)(a—b)=a2—b2

61678
領取福利

微信掃碼領取福利

微信掃碼分享