国产一区久久精品_性xxxxx_国产精品久久久久无码av_免费观看视频www

好多范文網 haoduofanwen.com,好用的范文大全!

新人教版八年級數學上冊名師教案

網友投稿 分享 時間: 加入收藏 我要投稿 點贊

新人教版八年級數學上冊名師教案(6篇)

數學家實際上是一個著迷者,不迷就沒有數學。”“沒有大膽的猜測,就做不出偉大的發現。”這里給大家分享一些關于新人教版八年級數學上冊名師教案,供大家參考學習。

新人教版八年級數學上冊名師教案

新人教版八年級數學上冊名師教案(篇1)

教學目標:

1、經歷數據離散程度的探索過程

2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。

教學重點:

會計算某些數據的極差、標準差和方差。

教學難點:

理解數據離散程度與三個差之間的關系。

教學準備:

計算器,投影片等

教學過程:

一、創設情境

1、投影課本P138引例。

(通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數據離散程度的一個量度極差)

2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統計量。

二、活動與探究

如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿,數據如圖(投影課本159頁圖)

問題:1、丙廠這20只雞腿質量的平均數和極差是多少?

2、如何刻畫丙廠這20只雞腿質量與其平均數的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的差距。

3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?

(在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數據離散程度的量度標準差和方差作鋪墊。

三、講解概念:

方差:各個數據與平均數之差的平方的平均數,記作s2

設有一組數據:x1, x2, x3,,xn,其平均數為

則s2= ,

而s= 稱為該數據的標準差(既方差的算術平方根)

從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩定。

四、做一做

你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規格更好一些?說說你是怎樣算的?

(通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)

五、鞏固練習:課本第172頁隨堂練習

六、課堂小結:

1、怎樣刻畫一組數據的離散程度?

2、怎樣求方差和標準差?

七、布置作業:習題5.5第1、2題。

新人教版八年級數學上冊名師教案(篇2)

教學目標:

1.知道負整數指數冪=(a≠0,n是正整數).

2.掌握整數指數冪的運算性質.

3.會用科學計數法表示小于1的數.

教學重點:

掌握整數指數冪的運算性質.

難點:

會用科學計數法表示小于1的數.

情感態度與價值觀:

通過學習課堂知識使學生懂得任何事物之間是相互聯系的,理論來源于實踐,服務于實踐.能利用事物之間的類比性解決問題.

教學過程:

一、課堂引入

1.回憶正整數指數冪的運算性質:

(1)同底數的冪的乘法:am?an = am+n (m,n是正整數);

(2)冪的乘方:(am)n = amn (m,n是正整數);

(3)積的乘方:(ab)n = anbn (n是正整數);

(4)同底數的冪的除法:am÷an = am?n ( a≠0,m,n是正整數,m>n);

(5)商的乘方:()n = (n是正整數);

2.回憶0指數冪的規定,即當a≠0時,a0 = 1.

3.你還記得1納米=10?9米,即1納米=米嗎?

4.計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數指數冪的運算性質am÷an = am?n (a≠0,m,n是正整數,m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

二、總結: 一般地,數學中規定: 當n是正整數時,=(a≠0)(注意:適用于m、n可以是全體整數) 教師啟發學生由特殊情形入手,來看這條性質是否成立. 事實上,隨著指數的取值范圍由正整數推廣到全體整數,前面提到的運算性質都可推廣到整數指數冪;am?an = am+n (m,n是整數)這條性質也是成立的.

三、科學記數法:

我們已經知道,一些較大的數適合用科學記數法表示,有了負整數指數冪后,小于1的正數也可以用科學記數法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數可以用科學記數法表示為a×10?n的形式,其中a是整數位數只有1位的正數,n是正整數. 啟發學生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發現其中的規律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數,如果小數點后到第一個非0數字前有8個0,用科學記數法表示這個數時,10的指數是?9,如果有m個0,則10的指數應該是?m?1.

新人教版八年級數學上冊名師教案(篇3)

5 14.3.2.2 等邊三角形(二)

教學目標

掌握等邊三角形的性質和判定方法.

培養分析問題、解決問題的能力.

教學重點

等邊三角形的性質和判定方法.

教學難點

等邊三角形性質的應用

教學過程

I創設情境,提出問題

回顧上節課講過的等邊三角形的有關知識

1.等邊三角形是軸對稱圖形,它有三條對稱軸.

2.等邊三角形每一個角相等,都等于60°

3.三個角都相等的三角形是等邊三角形.

4.有一個角是60°的等腰三角形是等邊三角形.

其中1、2是等邊三角形的性質;3、4的等邊三角形的判斷方法.

II例題與練習

1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

①在邊AB、AC上分別截取AD=AE.

②作∠ADE=60°,D、E分別在邊AB、AC上.

③過邊AB上D點作DE∥BC,交邊AC于E點.

2.已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.

III課堂小結

1、等腰三角形和性質

2、等腰三角形的條件

V布置作業

1.教科書第147頁練習1、2

2.選做題:

(1)教科書第150頁習題14.3第ll題.

(2)已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?

(3)《課堂感悟與探究》

5

新人教版八年級數學上冊名師教案(篇4)

活動一、創設情境

引入:首先我們來看幾道練習題(幻燈片)

(復習:平行線及三角形全等的知識)

下面我們一起來欣賞一組圖片(幻燈片)

[學生活動]觀看后答問題:你看到了哪些圖形?

(各式各樣的圖案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的三角板,看能拼出哪些圖案?)

[學生活動]小組合作交流,拼出圖案的類型。

同學們所拼的圖形中,除了有我們學過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質。(幻燈片出示課題)

活動二、合作交流,探求新知

問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

[學生活動]認真觀察、討論、思考、推理。

鼓勵學生交流,并是試著用自己的語言概括出平行四邊形的定義。

學生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。

并說明:平行四邊形不相鄰的兩個頂點連成的線段叫它的對角線。

平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?

[學生活動]動手操作,小組演示交流。鼓勵學生用多種方法探究。

小結平行四邊形的性質:

平行四邊形的對邊相等

平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)

你能演示你的結論是如何得到的嗎?(學生演示)

你能證明嗎?(幻燈片出示證明題)

[學生活動]先分析思路尤其是輔助線,請學生上黑板證明。

自己完成性質2的證明。

活動三、運用新知

性質掌握了嗎?一起來看一道題目:

嘗試練習(幻燈片)例1

[學生活動]作嘗試性解答。

新人教版八年級數學上冊名師教案(篇5)

一、平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

1.平移

2.平移的性質:

⑴經過平移,對應點所連的線段平行且相等;

⑵對應線段平行且相等,對應角相等。

⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。

(4)平移后的圖形與原圖形全等。

3.簡單的平移作圖

①確定個圖形平移后的位置的條件:

⑴需要原圖形的位置;

⑵需要平移的方向;

⑶需要平移的距離或一個對應點的位置。

②作平移后的圖形的方法:

⑴找出關鍵點;⑵作出這些點平移后的對應點;

⑶將所作的對應點按原來方式順次連接,所得的;

二、旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角稱為旋轉角。

1.旋轉

2.旋轉的性質

⑴旋轉變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

⑵旋轉過程中,圖形上每一個點都繞旋轉中心沿相同方向轉動了相同的角度。

⑶任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。

⑷旋轉前后的兩個圖形全等。

3.簡單的旋轉作圖

⑴已知原圖,旋轉中心和一對對應點,求作旋轉后的圖形。

⑵已知原圖,旋轉中心和一對對應線段,求作旋轉后的圖形。

⑶已知原圖,旋轉中心和旋轉角,求作旋轉后的圖形。

三、分析組合圖案的形成

①確定組合圖案中的“基本圖案”

②發現該圖案各組成部分之間的內在聯系

③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉變換;⑶軸對稱變換;⑷旋轉變換與平移變換的組合;

⑸旋轉變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。

新人教版八年級數學上冊名師教案(篇6)

平方差公式

學習目標:

1、能推導平方差公式,并會用幾何圖形解釋公式;

2、能用平方差公式進行熟練地計算;

3、經歷探索平方差公式的推導過程,發展符號感,體會特殊一般特殊的認識規律.

學習重難點:

重點:能用平方差公式進行熟練地計算;

難點:探索平方差公式,并用幾何圖形解釋公式.

學習過程:

一、自主探索

1、計算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

2、觀察以上算式及其運算結果,你發現了什么規律?再舉兩例驗證你的發現.

3、你能用自己的語言敘述你的發現嗎?

4、平方差公式的特征:

(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數的和與差。或者說兩 個二項式必須有一項完全相同,另一項只有符號不同。

(2)、公式中的a與b可以是數,也可以換成一個代數式。

二 、試一試

例1、利用平方差公式計算

(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

例2、利用平方差公式計算

(1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

三、合作交流

如圖,邊長為a的大正方形中有一個邊長為b的小正方形.

(1)請表示圖中陰影部分的面積.

(2)小穎將陰影部分拼成了一個長方形,這個長方形的長和寬分別是多少?你能表示出它的面積嗎? a a b

(3)比較(1)(2)的結果,你能驗證平方差公式嗎?

四、鞏固練習

1、利用平方差公式計算

(1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

(3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

2、利用平方差公式計算

(1)803797 (2)398402

3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

A.只能是數B.只能是單項式 C.只能是多項式 D.以上都可以

4.下列多項式的乘法中,可以用平方差公式計算的是( )

A.(a+b)(b+a) B.(-a+b)(a-b)

C.( a+b)(b- a) D.(a2-b)(b2+a)

5.下列計算中,錯誤的有( )

①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

A.1個 B.2個 C.3個 D.4個

6.若x2-y2=30,且x-y=-5,則x+y的值是( )

A.5 B.6 C.-6 D.-5

7.(-2x+y)(-2x-y)=______.

8.(-3x2+2y2)(______)=9x4-4y4.

9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

10.兩個正方形的邊長之和為5,邊長之差為2,那么用較大的正方形的面積減去較小的正方形的面積,差是_____.

11.利用平方差公式計算:20 19 .

12.計算:(a+2)(a2+4)(a4+16)(a-2).

五、學習反思

我的收獲:

我的疑惑:

六、當堂測試

1、下列多項式乘法中能用平方差公式計算的是( ).

(A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

2、填空:(1)(x2-2)(x2+2)=

(2)(5x-3y)( )=25x2-9y2

3、計算:

(1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

4.利用平方差公式計算

①1003997 ②14 15

七、課外拓展

下列各式哪些能用平方差公式計算?怎樣用?

1) (a-b+c)(a-b-c)

2) (a+2b-3)(a-2b+3)

3) (2x+y-z+5)(2x-y+z+5)

4) (a-b+c-d)(-a-b-c-d)

2.2完全平方公式(1)

61878
領取福利

微信掃碼領取福利

微信掃碼分享