国产一区久久精品_性xxxxx_国产精品久久久久无码av_免费观看视频www

好多范文網 haoduofanwen.com,好用的范文大全!

北師版八年級數學上冊第三章教案

網友投稿 分享 時間: 加入收藏 我要投稿 點贊

北師版八年級數學上冊第三章教案【5篇】

在青春的世界里,沙粒要變成珍珠,石頭要化作金;青春的魅力,應當叫枯枝長出鮮果,沙漠布滿森林;這才是青春的快樂,青春的本份!這里給大家分享一些關于北師版八年級數學上冊第三章教案,供大家參考學習。

北師版八年級數學上冊第三章教案

北師版八年級數學上冊第三章教案【篇1】

一、回顧交流,合作學習

【活動方略】

活動設計:教師先將學生分成四人小組,交流各自的小結,并結合課本P87的小結進行反思,教師巡視,并且不斷引導學生進入復習軌道.然后進行小組匯報,匯報時可借助投影儀,要求學生上臺匯報,最后教師歸納.

【問題探究1】(投影顯示)

飛機在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機距離小明頭頂5000米,問:飛機飛行了多少千米?

思路點撥:根據題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機這時飛行多少千米,就要知道飛機在20秒時間里飛行的路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據勾股定理來計算出BC的長.(3000千米)

【活動方略】

教師活動:操作投影儀,引導學生解決問題,請兩位學生上臺演示,然后講評.

學生活動:獨立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.

【問題探究2】(投影顯示)

一個零件的形狀如右圖,按規定這個零件中∠A與∠BDC都應為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?

思路點撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.

【活動方略】

教師活動:操作投影儀,關注學生的思維,請兩位學生上講臺演示之后再評講.

學生活動:思考后,完成“問題探究2”,小結方法.

解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

∴△ABD為直角三角形,∠A=90°.

在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

∴△BDC是直角三角形,∠CDB=90°

因此這個零件符合要求.

【問題探究3】

甲、乙兩位探險者在沙漠進行探險,某日早晨8:00甲先出發,他以6千米/時的速度向東行走,1小時后乙出發,他以5千米/時的速度向北行進,上午10:00,甲、乙兩人相距多遠?

思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

【活動方略】

教師活動:操作投影儀,巡視、關注學生訓練,并請兩位學生上講臺“板演”.

學生活動:課堂練習,與同伴交流或舉手爭取上臺演示

北師版八年級數學上冊第三章教案【篇2】

教學目標:

1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。

2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。

3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。

4、能利和計算器求一組數據的算術平均數。

教學重點:體會平均數、中位數、眾數在具體情境中的意義和應用。

教學難點:對于平均數、中位數、眾數在不同情境中的應用。

教學方法:歸納教學法。

教學過程:

一、知識回顧與思考

1、平均數、中位數、眾數的概念及舉例。

一般地對于n個數X1,……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。

如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。

中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。

眾數就是一組數據中出現次數最多的那個數據。

如3,2,3,5,3,4中3是眾數。

2、平均數、中位數和眾數的特征:

(1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。

(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。

(3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。

(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。

3、算術平均數和加權平均數有什么區別和聯系:

算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。

4、利用計算器求一組數據的平均數。

利用科學計算器求平均數的方法計算平均數。

二、例題講解:

例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統計了這15人某月的銷售量如下:

每人銷售件數1800 510 250 210 150 120

人數113532

(1)求這15位營銷人員該月銷售量的平均數、中位數和眾數;

(2)假設銷售部負責人把每位營銷員的月銷售額定為平均數,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。

例2,某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?

三、課堂練習:復習題A組

四、小結:

1、掌握平均數、中位數與眾數的概念及計算。

2、理解算術平均數與加權平均數的聯系與區別。

五、作業:復習題B組、C組(選做)

北師版八年級數學上冊第三章教案【篇3】

一、教材分析教材的地位和作用:

本節內容是第一課時《軸對稱》,本節立足于學生已有的生活經驗和數學活動經歷,從觀察生活中的軸對稱現象開始,從整體的角度認識軸對稱的特征;同時本節內容與圖形的.三種變換操作(平移、翻折、旋轉)之一的“翻折”有著不可分割的聯系,通過對這一節課的學習,使學生從對圖形的感性認識上升到對軸對稱的理性認識,為進一步學習軸對稱性質及后面學習等腰三角形和圓等有關知識奠定基礎。同時這一節也是聯系數學與生活的橋梁。

二、學情分析

八年級學生有一定的知識水平,已經初步形成了一定觀察能力、語言表達能力,這節課是在學生學習了“全等三角形”相關內容之后安排的一節課,學生已經具備了一定的推理能力,因此,這節課通過觀察生活中的實例和動手實踐,讓學生自己去發現和總結軸對稱圖形和軸對稱的概念及它們之間的區別與聯系是切實可行的。

三、教學目標及重點、難點的確定

根據新課程標準、教材內容特點、和學生已有的認知結構、心理特征,我確定本節教學目標、重點、難點如下:

(一)教學目標:

1、知識技能

(1)理解并掌握軸對稱圖形的概念,對稱軸;能準確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.

(2)理解并掌握軸對稱的概念,對稱軸;了解對稱點.

(3)了解軸對稱圖形和軸對稱的聯系與區別.

2、過程與方法目標

經歷“觀察——比較——操作——概括——總結一應用”的學習過程,培養學生的動手實踐能力、抽象思維和語言表達能力.

3、情感、態度與價值觀

通過對生活中數學問題的探究,進一步提高學生學數學、用數學的意識,在自主探究、合作交流的過程中,體會數學的重要作用,培養學生的學習興趣,熱愛生活的情感和欣賞圖形的對稱美。

(二)教學重點:軸對稱圖形和軸對稱的有關概念.

(三)教學難點:軸對稱圖形與軸對稱的聯系、區別

.四、教法和學法設計

本節課根據教材內容的特點和八年級學生的知識結構和心理特征。我選擇的:

【教法策略】采用以直觀演示法和實驗發現法為主,設疑誘導法為輔。教學中教學中通過豐富的圖片展示,創設出問題情景,誘導學生思考、操作,教師適時地演示,并運用多媒體化靜為動,激發學生探求知識的欲望,逐步推導歸納得出結論,使學生始終處于主動探索問題的積極狀態,使不同層次學生的知識水平得到恰當的發展和提高。

【學法策略】:讓學生在“觀察----比較——操作——概括——檢驗——應用”的學習過程中,自主參與知識的發生、發展、形成的過程,使學生在自主探索和合作交流中理解和掌握本節課的有關內容。

【輔助策略】我利用多媒體課件輔助教學,適時呈現問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率

五、說程序設計:

新的課程標準指出學生的學習內容應該是現實的有意義的,有利于學生進行觀察、試驗、猜測、驗證、推理與交流等數學活動。為了達到預期的教學目標,我對整個教學過程進行了設計。

(一)、觀圖激趣、設疑導入。

出示圖片,設計故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。

[設計意圖]以興趣為先導,創設學生喜聞樂見的故事情景,激發了學生濃厚的學習興趣,

(二)、實踐探索、感悟特征.

《活動一(課件演示)觀察這些圖形有什么特點?》在這個環節中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學生自己觀察,并引導學生感知,無論是隨風起舞的風箏,凌空翱翔的飛機,還是古今中外各式風格的典型建筑很多圖形都給我們以美得感受。然后,教師適時提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學生觀察、猜想、探究、討論,教師可以適當地引導,讓學生發現:把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導學生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。

為了進一步認識軸對稱圖形的特點又出示了一組練習

(練習1)這是一組常見幾何圖形,要求學生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸

[設計意圖]通過這個練習題不僅讓學生鞏固了軸對稱圖形的概念,而且讓學生認識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學生認識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。

(練習2)國家的一個象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進一步鞏固了軸對稱圖形的概念,培養了學生的觀察能力、想象能力,同時通過展示各國的國旗,不僅激發了學生的學習興趣,而且也拓展了學生的知識面。

(三)、動手操作、再度探索新知。

將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學中注重學生活動,鼓勵學生親自實踐,積極思考,在樂學的氛圍中,培養學生的動手能力,從而引出軸對稱概念。

再次引導學生討論、歸納得出軸對稱的概念……。之后再結合動畫演示加深對軸對稱概念的理解,進而引出對稱軸、對稱點的概念.并結合圖形加以認識。

(四)、鞏固練習、升華新知。

出示幾幅圖形,請同學們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,

在這組練習中讓學生動手、動口、動眼、動腦,充分調動了學生的各種感官參與學習,既加深了對兩個概念的理解,又鍛煉了同學的各方面能力。完成這組練習題后讓學生,歸納軸對稱圖形及軸對稱區別與聯系,先讓學生自己歸納,然后用多媒體展示。

(課件演示)軸對稱圖形及兩個圖形成軸對稱區別與聯系

(五)、綜合練習、發展思維。

1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。

2、判斷:

生活中不僅有些物體的形狀是軸對稱圖形,我們所學的數字、字母和漢字中也有一些可以看成軸對稱圖形。

(1)下面的數字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?

0123456789ABCDEFGH

3、像這樣寫法的漢字哪些是軸對稱圖形?

口工用中由日直水清甲

(這幾道題的練習做到了知識性、技能性、思想性和藝術性溶為一體。這樣設計,不但活躍了課堂氣氛,又檢查了學生掌握新知的情況,而且激發了學生的學習興趣,又讓學生感到數學就在自己的身邊)

(六)歸納小結、布置作業

[設計意圖]培養學生歸納和語言表達能力,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。作業布置要有層次,照顧學生個體差異使不同的人在數學上獲得不同的發展!

六、設計說明

這節課,我依據課程標準、教材特點、遵循學生的認知規律。通過六個環節的教學設計,通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學生輕松掌握了軸對稱圖形與關于直線成軸對稱兩個概念,指導學生操作、觀察、引導概括,獲取新知;同時注重培養學生的形象思維和抽象思維。在教學過程中讓學生動口、動手、動眼、動腦,使學生學有興趣、學有所獲。這就是我對本節課的理解和說明。

北師版八年級數學上冊第三章教案【篇4】

課題:一元二次方程實數根錯例剖析課

【教學目的】精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。

【課前練習】

1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。

【典型例題】

例1 下列方程中兩實數根之和為2的方程是()

(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

錯答: B

正解: C

錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。

例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )

(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

錯解 :B

正解:D

錯因剖析:漏掉了方程有實數根的前提是△≥0

例3(20__廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變為一次方程,不可能有兩個實根。

正解: -1≤k<2且k≠

例4 (20__山東太原中考題) 已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。

錯解:由根與系數的關系得

x1+x2= -(2m+1), x1x2=m2+1,

∵x12+x22=(x1+x2)2-2 x1x2

=[-(2m+1)]2-2(m2+1)

=2 m2+4 m-1

又∵ x12+x22=15

∴ 2 m2+4 m-1=15

∴ m1 = -4 m2 = 2

錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數根,不符合題意。

正解:m = 2

例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數根,求m的取值范圍。

錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

∵ △≥0

∴ 16 m+20≥0,

∴ m≥ -5/4

又 ∵ m2-1≠0,

∴ m≠±1

∴ m的取值范圍是m≠±1且m≥ -

錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。

正解:m的取值范圍是m≥-

例6 已知二次方程x2+3 x+a=0有整數根,a是非負數,求方程的整數根。

錯解:∵方程有整數根,

∴△=9-4a>0,則a<2.25

又∵a是非負數,∴a=1或a=2

令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

∴方程的整數根是x1= -1, x2= -2

錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0, x4= -3

正解:方程的整數根是x1= -1, x2= -2 , x3=0, x4= -3

【練習】

練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。

(1)求k的取值范圍;

(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。

解:(1)根據題意,得△=(2k-1)2-4 k2>0 解得k<

∴當k< 時,方程有兩個不相等的實數根。

(2)存在。

如果方程的兩實數根x1、x2互為相反數,則x1+ x2=- =0,得k= 。經檢驗k= 是方程- 的解。

∴當k= 時,方程的兩實數根x1、x2互為相反數。

讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

解:上面解法錯在如下兩個方面:

(1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數根。

(2)k= 。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數

練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根 ?

解:(1)當a=0時,方程為4x-1=0,∴x=

(2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

∴當a≥ -4且a≠0時,方程有實數根。

又因為方程只有正實數根,設為x1,x2,則:

x1+x2=- >0 ;

x1. x2=- >0 解得 :a<0

綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數根。

【小結】

以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。

1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。

2、運用根與系數關系時,△≥0是前提條件。

3、條件多面時(如例5、例6)考慮要周全。

【布置作業】

1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數根。

求證:關于x的方程

(m-5)x2-2(m+2)x + m=0一定有一個或兩個實數根。

考題匯編

1、(20__年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。

2、(20__年廣東省中考題)已知關于x的方程x2-2x+m-1=0

(1)若方程的一個根為1,求m的值。

(2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。

3、(20__年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。

4、(20__年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

北師版八年級數學上冊第三章教案【篇5】

一、學情分析

本學期本人繼續擔任八年級(2)班的數學教學工作,八年級是初中學習過程中的關鍵時期,學生基礎的好壞,直接影響到將來是否能升學。從上期期末考試的成績來看1班、2班的成績差異很大,2班有少數學生不上進,思維不緊跟老師,有部分同學基礎較差,問題較嚴重。要在本期獲得理想成績,老師和學生都要付出努力,查漏補缺,充分發揮學生是學習的主體,教師是教的主體作用,注重方法,培養能力。

二、教材分析

本學期教學內容共計五章,知識的前后聯系,教材的教學目標,重、難點分析如下:

第十七章分式

本章的主要內容包括:分式的概念,分式的基本性質,分式的約分與通分,分式的加、減、乘、除運算,整數指數冪的概念及運算性質,分式方程的概念及可化為一元一次方程的分式方程的解法。

第十八章函數及其圖像

函數是研究現實世界變化規律的一個重要模型,本單元學生在學習了一次函數后,進一步研究反比例函數。學生在本章中經歷:反比例函數概念的抽象概括過程,體會建立數學模型的思想,進一步發展學生的抽象思維能力;經歷反比例函數的圖象及其性質的探索過程,在交流中發展能力這是本章的重點之一;經歷本章的重點之二:利用反比例函數及圖象解決實際問題的過程,發展學生的數學應用能力;經歷函數圖象信息的識別應用過程,發展學生形象思維;能根據所給信息確定反比例函數表達式,會作反比例函數圖象,并利用它們解決簡單的實際問題。本章的難點在于對學生抽象思維的培養,以及提高數形結合的意識和能力。

第十九章全等三角形

本章主要內容是探索三角形全等的判定方法,領略推理證明的奧秘,由于三角形全等的判定方法與全等三角形的性質具有“互逆”的特點,所以本章因勢利導,介紹了命題與定理、逆命題與逆命題的有關知識。此外,本章教材最后還介紹了幾種常用的基本作圖和簡單的尺規作圖的方法。

第二十章平行四邊形的判定

本章的內容包括平行四邊形的判定;矩形、菱形、正方形等幾種特殊平行四邊形的判定;等腰梯形的判定等幾個部分。本章首先通過回顧平行四邊形的性質,由性質引出判定方法,在此基礎上,學習矩形、菱形、正方形等特殊平行四邊形的判定,最后介紹了等腰梯形的判定與應用。本章知識是在學習了平行線、三角形、平行四邊形的性質等知識的基礎上的進一步深化和提高,是今后學習其他幾何知識的基礎。

第二十一章數據的整理與初步處理

本章主要研究平均數、中位數、眾數以及極差、方差等統計量的統計意義,學習如何利用這些統計量分析數據的集中趨勢和離散情況,并通過研究如何用樣本的平均數和方差估計總體的平均數和方差,進一步體會用樣本估計總體的思想。

三、提高學科教育質量的主要措施:

1、認真做好教學六認真工作。把教學六認真作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據新課程標準,擴充教材內容,認真上課,批改作業,認真輔導,認真制作測試試卷,也讓學生學會認真學習。

2、興趣是最好的老師,愛因斯坦如是說。激發學生的興趣,給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發學生的興趣。

3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發現快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫小論文,寫復習提綱,使知識來源于學生的構造。

4、引導學生積極歸納解題規律,引導學生一題多解,多解歸一,培養學生透過現象看本質,提高學生舉一反三的能力,這是提高學生素質的根本途徑之一,培養學生的發散思維,讓學生處于一種思如泉涌的狀態。

5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。

6、培養學生良好的學習習慣,陶行知說:教育就是培養習慣,有助于學生穩步提高學習成績,發展學生的非智力因素,彌補智力上的不足。

7、指導成立“課外興趣小組”的民間組織,開展豐富多彩的課外活動,開展對奧數題的研究,課外調查,操作實踐,帶動班級學生學習數學,同時發展這一部分學生的特長。

8、開展分層教學,布置作業設置A、B、C三類分層布置分別適合于差、中、好三類學生,課堂上的提問照顧好好、中、差三類學生,使他們都等到發展。

9、進行個別輔導,優生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發展鋪平道路。

10、培養學生學習數學的良好習慣。這些習慣包括:

①認真做作業的習?包括作業前清理好桌面,作業后認真檢查;

②預習的習慣;

③認真看批改后的作業并及時更正的習慣;

④認真做好課前準備的習慣;

⑤在書上作精要筆記的習慣;

⑥妥善保管書籍資料和學習用品的習慣;

⑦認真閱讀數學教材的習慣。

61726
領取福利

微信掃碼領取福利

微信掃碼分享