教學(xué)設(shè)計(jì)是一個(gè)系統(tǒng)設(shè)計(jì)并實(shí)現(xiàn)學(xué)習(xí)目標(biāo)的過程,它遵循學(xué)習(xí)效果最優(yōu)的原則,是課件開發(fā)質(zhì)量高低的關(guān)鍵所在。以下是小編為大家準(zhǔn)備的初中數(shù)學(xué)教案設(shè)計(jì)范例,歡迎大家前來參閱。
更多“教案設(shè)計(jì)”相關(guān)文章內(nèi)容推薦(↓↓↓)
《禮記》二則教學(xué)設(shè)計(jì)一等獎(jiǎng)5篇
《讓世界充滿愛》教學(xué)設(shè)計(jì)5篇
幼兒園教師公開課教學(xué)設(shè)計(jì)5篇
《海底世界》優(yōu)質(zhì)課教學(xué)設(shè)計(jì)5篇
《燕子》教學(xué)設(shè)計(jì)和意圖5篇
初中數(shù)學(xué)教案設(shè)計(jì)范例【1】
《角平分線的性質(zhì)》
(一)創(chuàng)設(shè)情境 導(dǎo)入新課
不利用工具,請(qǐng)你將一張用紙片做的角分成兩個(gè)相等的角。你有什么辦法?
如果前面活動(dòng)中的紙片換成木板、鋼板等沒法折的角,又該怎么辦呢?
設(shè)計(jì)目的:能聚攏學(xué)生的思維為新課的開展創(chuàng)造了良好的教學(xué)氛圍。
(二)合作交流 探究新知
(活動(dòng)一)探究角平分儀的原理。具體過程如下:
播放奧巴馬訪問我國(guó)的錄像資料------引出雨傘-----觀察它的截面圖,使學(xué)生認(rèn)清其 中的邊角關(guān)系-----引出角平分線;并且運(yùn)用幾何畫板對(duì)傘的開合進(jìn)行動(dòng)態(tài)演示,讓學(xué)生直觀感受傘面形成的角與主桿的關(guān)系-----讓學(xué)生設(shè)計(jì)制作角平分儀;并利用以前所學(xué)的知識(shí)尋找理論上的依據(jù),說明這個(gè)儀器的制作原理。
設(shè)計(jì)目的:用生活中的實(shí)例感知。以最近大事作引入點(diǎn),以最常見的事物為載體,讓學(xué)生感受到生活中處處都有數(shù)學(xué),認(rèn)識(shí)到數(shù)學(xué)的價(jià)值。其中設(shè)計(jì)制作角平分儀,可培養(yǎng)學(xué)生的創(chuàng)造力和成就感以及學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生很輕松的完成活動(dòng)二。
(活動(dòng)二)通過上述探究,能否總結(jié)出尺規(guī)作已知角的平分線的一般方法.自己動(dòng)手做做看.然后與同伴交流操作心得.
分小組完成這項(xiàng)活動(dòng),教師可參與到學(xué)生活動(dòng)中,及時(shí)發(fā)現(xiàn)問題,給予啟發(fā)和指導(dǎo),使講評(píng)更具有針對(duì)性。
討論結(jié)果展示: 教師根據(jù)學(xué)生的敘述,利用多媒體課件演示作已知角的平分線的方法:
已知:∠AO B.
求作:∠AOB的平分線.
作法:
(1)以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑作弧,分別交OA、OB于M、N.
(2)分別以M、N為圓心,大于1/2MN的長(zhǎng)為半徑作弧.兩弧在∠AOB內(nèi)部交于點(diǎn)C.
(3)作射線OC,射線OC即為所求.
設(shè)計(jì)目的:使學(xué)生能更直觀地理解畫法,提高學(xué)習(xí)數(shù)學(xué)的興趣。
議一議:
1.在上面作法的第二步中,去掉“大于 MN的長(zhǎng)”這個(gè)條件行嗎?
2.第二步中所作的兩弧交點(diǎn)一定在∠AOB的內(nèi)部嗎?
設(shè)計(jì)這兩個(gè)問題的目的在于加深對(duì)角的平分線的作法的理解,培養(yǎng)數(shù)學(xué)嚴(yán)密性的良好學(xué)習(xí)習(xí)慣。
學(xué)生討論結(jié)果總結(jié):
1.去掉“大于 MN的長(zhǎng)”這個(gè)條件,所作的兩弧可能沒有交點(diǎn),所以就找不到角的平分線.
2.若分別以M、N為圓心,大于 MN的長(zhǎng)為半徑畫兩弧,兩弧的交點(diǎn)可能在∠AOB的內(nèi)部,也可能在∠AOB的外部,而我們要找的是∠AOB內(nèi)部的交點(diǎn),否則兩弧交點(diǎn)與頂點(diǎn)連線得到的射線就不是∠AOB的平分線了.
3.角的平分線是一條射線.它不是線段,也不是直線,所以第二步中的兩個(gè)限制缺一不可.
4.這種作法的可行性可以通過全等三角形來證明.
(活動(dòng)三)探究角平分線的性質(zhì)
思考:已知一角及其角平分線添加輔助線構(gòu)成全等三角形;構(gòu)成全等的直角三角形。這樣的三角形有多少對(duì)?
這樣設(shè)計(jì)的目的是加深對(duì)全等的認(rèn)識(shí)。
初中數(shù)學(xué)教案設(shè)計(jì)范例【2】
一、教學(xué)目標(biāo):
1、知道一次函數(shù)與正比例函數(shù)的定義。
2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì)。
3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系。
4、掌握直線的平移法則簡(jiǎn)單應(yīng)用。
5、能應(yīng)用本章的基礎(chǔ)知識(shí)熟練地解決數(shù)學(xué)問題。
二、教學(xué)重、難點(diǎn):
重點(diǎn):初步構(gòu)建比較系統(tǒng)的函數(shù)知識(shí)體系。
難點(diǎn):對(duì)直線的平移法則的理解,體會(huì)數(shù)形結(jié)合思想。
三、教學(xué)過程:
1、一次函數(shù)與正比例函數(shù)的定義:
一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)。
正比例函數(shù):對(duì)于 y=kx+b,當(dāng)b=0, k≠0時(shí),有y=kx,此時(shí)稱y是x的正比例函數(shù),k為正比例系數(shù)。
2、一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:
(1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。
(2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過原點(diǎn)(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過點(diǎn)(0,b)且與y=kx
平行的一條直線。
基礎(chǔ)訓(xùn)練:
1、寫出一個(gè)圖象經(jīng)過點(diǎn)(1,— 3)的函數(shù)解析式為:
2、直線y=—2X—2不經(jīng)過第 象限,y隨x的增大而。
3、如果P(2,k)在直線y=2x+2上,那么點(diǎn)P到x軸的距離是:
4、已知正比例函數(shù) y =(3k—1)x,,若y隨x的增大而增大,則k是:
5、過點(diǎn)(0,2)且與直線y=3x平行的直線是:
6、若正比例函數(shù)y =(1—2m)x 的圖像過點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)當(dāng)x1y2,則m的取值范圍是:
7、若y—2與x—2成正比例,當(dāng)x=—2時(shí),y=4,則x= 時(shí),y = —4。
8、直線y=— 5x+b與直線y=x—3都交y軸上同一點(diǎn),則b的值為 。
9、已知圓O的半徑為1,過點(diǎn)A(2,0)的直線切圓O于點(diǎn)B,交y軸于點(diǎn)C。
(1)求線段AB的長(zhǎng)。
(2)求直線AC的解析式。
初中數(shù)學(xué)教案設(shè)計(jì)范例【3】
一、教學(xué)目標(biāo):
1、理解二元一次方程及二元一次方程的解的概念;
2、學(xué)會(huì)求出某二元一次方程的幾個(gè)解和檢驗(yàn)?zāi)硨?duì)數(shù)值是否為二元一次方程的解;
3、學(xué)會(huì)把二元一次方程中的一個(gè)未知數(shù)用另一個(gè)未知數(shù)的一次式來表示;
4、在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):二元一次方程的意義及二元一次方程的解的概念。
難點(diǎn):把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。
三、教學(xué)方法與教學(xué)手段:
通過與一元一次方程的比較,加強(qiáng)學(xué)生的類比的思想方法; 通過“合作學(xué)習(xí)”,使學(xué)生認(rèn)識(shí)數(shù)學(xué)是根據(jù)實(shí)際的需要而產(chǎn)生發(fā)展的觀點(diǎn)。
四、教學(xué)過程:
1、情景導(dǎo)入:
新聞鏈接:x70歲以上老人可領(lǐng)取生活補(bǔ)助。
得到方程:80a+150b=902 880、
2、新課教學(xué):
引導(dǎo)學(xué)生觀察方程80a+150b=902 880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1次的方程叫做二元一次方程。
做一做:
(1)根據(jù)題意列出方程:
①小明去看望奶奶,買了5 kg蘋果和3 kg梨共花去23元,分別求蘋果和梨的單價(jià)、設(shè)蘋果的單價(jià)x元/kg , 梨的單價(jià)y元/kg ;
②在高速公路上,一輛轎車行駛2時(shí)的路程比一輛卡車行駛3時(shí)的路程還多20千米,如果設(shè)轎車的速度是a千米/小時(shí),卡車的速度是b千米/小時(shí),可得方程:
(2)課本P80練習(xí)2、判定哪些式子是二元一次方程方程。
合作學(xué)習(xí):
活動(dòng)背景愛心滿人間——記求是中學(xué)“學(xué)雷鋒、關(guān)愛老人”志愿者活動(dòng)。
問題:參加活動(dòng)的36名志愿者,分為勞動(dòng)組和文藝組,其中勞動(dòng)組每組3人,文藝組每組6人、團(tuán)支書擬安排8個(gè)勞動(dòng)組,2個(gè)文藝組,單從人數(shù)上考慮,此方案是否可行? 為什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等? 由學(xué)生檢驗(yàn)得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的一對(duì)未知數(shù)的值叫做二元一次方程的一個(gè)解。
并提出注意二元一次方程解的書寫方法。
3、合作學(xué)習(xí):
給定方程x+2y=8,男同學(xué)給出y(x取絕對(duì)值小于10的整數(shù))的值,女同學(xué)馬上給出對(duì)應(yīng)的x的值; 接下來男女同學(xué)互換、(比一比哪位同學(xué)反應(yīng)快)請(qǐng)算的最快最準(zhǔn)確的同學(xué)講他的計(jì)算方法、提問:給出x的值,計(jì)算y的值時(shí),y的系數(shù)為多少時(shí),計(jì)算y最為簡(jiǎn)便?
出示例題:已知二元一次方程 x+2y=8。
(1)用關(guān)于y的代數(shù)式表示x;
(2)用關(guān)于x的代數(shù)式表示y;
(3)求當(dāng)x= 2,0,—3時(shí),對(duì)應(yīng)的y的值,并寫出方程x+2y=8的三個(gè)解。
(當(dāng)用含x的一次式來表示y后,再請(qǐng)同學(xué)做游戲,讓同學(xué)體會(huì)一下計(jì)算的速度是否要快)
4、課堂練習(xí):
(1)已知:5xm—2yn=4是二元一次方程,則m+n=;
(2)二元一次方程2x—y=3中,方程可變形為y= 當(dāng)x=2時(shí),y= ;
5、你能解決嗎?
小紅到郵局給遠(yuǎn)在農(nóng)村的爺爺寄掛號(hào)信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少?gòu)堖@兩種面額的郵票?說說你的方案。
6、課堂小結(jié):
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關(guān)性;
(3)會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。
7、布置作業(yè):
初中數(shù)學(xué)教案設(shè)計(jì)范例【4】
《正弦和余弦》
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生知道當(dāng)直角三角形的銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也都固定這一事實(shí).
(二)能力訓(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生會(huì)觀察、比較、分析、概括等邏輯思維能力.
(三)德育滲透點(diǎn)
引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.重點(diǎn):使學(xué)生知道當(dāng)銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也是固定的這一事實(shí).
2.難點(diǎn):學(xué)生很難想到對(duì)任意銳角,它的對(duì)邊、鄰邊與斜邊的比值也是固定的事實(shí),關(guān)鍵在于教師引導(dǎo)學(xué)生比較、分析,得出結(jié)論.
三、教學(xué)步驟
(一)明確目標(biāo)
1.如圖6-1,長(zhǎng)5米的梯子架在高為3米的墻上,則A、B間距離為多少米?
2.長(zhǎng)5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?
3.若長(zhǎng)5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?
4.若長(zhǎng)5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?
前兩個(gè)問題學(xué)生很容易回答.這兩個(gè)問題的設(shè)計(jì)主要是引起學(xué)生的回憶,并使學(xué)生意識(shí)到,本章要用到這些知識(shí).但后兩個(gè)問題的設(shè)計(jì)卻使學(xué)生感到疑惑,這對(duì)初三年級(jí)這些好奇、好勝的學(xué)生來說,起到激起學(xué)生的學(xué)習(xí)興趣的作用.同時(shí)使學(xué)生對(duì)本章所要學(xué)習(xí)的內(nèi)容的特點(diǎn)有一個(gè)初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識(shí)是不能解決的,解決這類問題,關(guān)鍵在于找到一種新方法,求出一條邊或一個(gè)未知銳角,只要做到這一點(diǎn),有關(guān)直角三角形的其他未知邊角就可用學(xué)過的知識(shí)全部求出來.
通過四個(gè)例子引出課題.
(二)整體感知
1.請(qǐng)每一位同學(xué)拿出自己的三角板,分別測(cè)量并計(jì)算30°、45°、60°角的對(duì)邊、鄰邊與斜邊的比值.
學(xué)生很快便會(huì)回答結(jié)果:無論三角尺大小如何,其比值是一個(gè)固定的值.程度較好的學(xué)生還會(huì)想到,以后在這些特殊直角三角形中,只要知道其中一邊長(zhǎng),就可求出其他未知邊的長(zhǎng).
2.請(qǐng)同學(xué)畫一個(gè)含40°角的直角三角形,并測(cè)量、計(jì)算40°角的對(duì)邊、鄰邊與斜邊的比值,學(xué)生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的.大部分學(xué)生可能會(huì)想到,當(dāng)銳角取其他固定值時(shí),其對(duì)邊、鄰邊與斜邊的比值也是固定的嗎?
這樣做,在培養(yǎng)學(xué)生動(dòng)手能力的同時(shí),也使學(xué)生對(duì)本節(jié)課要研究的知識(shí)有了整體感知,喚起學(xué)生的求知欲,大膽地探索新知.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過程
1.通過動(dòng)手實(shí)驗(yàn),學(xué)生會(huì)猜想到“無論直角三角形的銳角為何值,它的對(duì)邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個(gè)命題呢?學(xué)生這時(shí)的思維很活躍.對(duì)于這個(gè)問題,部分學(xué)生可能能解決它.因此教師此時(shí)應(yīng)讓學(xué)生展開討論,獨(dú)立完成.
2.學(xué)生經(jīng)過研究,也許能解決這個(gè)問題.若不能解決,教師可適當(dāng)引導(dǎo):
若一組直角三角形有一個(gè)銳角相等,可以把其
頂點(diǎn)A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學(xué)們能解決這個(gè)問題嗎?引導(dǎo)學(xué)生獨(dú)立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的對(duì)邊、鄰邊與斜邊的比值,是一個(gè)固定值.
通過引導(dǎo),使學(xué)生自己獨(dú)立掌握了重點(diǎn),達(dá)到知識(shí)教學(xué)目標(biāo),同時(shí)培養(yǎng)學(xué)生能力,進(jìn)行了德育滲透.
而前面導(dǎo)課中動(dòng)手實(shí)驗(yàn)的設(shè)計(jì),實(shí)際上為突破難點(diǎn)而設(shè)計(jì).這一設(shè)計(jì)同時(shí)起到培養(yǎng)學(xué)生思維能力的作用.
練習(xí)題為 作了孕伏同時(shí)使學(xué)生知道任意銳角的對(duì)邊與斜邊的比值都能求出來.
(四)總結(jié)與擴(kuò)展
1.引導(dǎo)學(xué)生作知識(shí)總結(jié):本節(jié)課在復(fù)習(xí)勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過動(dòng)手實(shí)驗(yàn)、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對(duì)邊、鄰邊與斜邊的比值也是固定的.
教師可適當(dāng)補(bǔ)充:本節(jié)課經(jīng)過同學(xué)們自己動(dòng)手實(shí)驗(yàn),大膽猜測(cè)和積極思考,我們發(fā)現(xiàn)了一個(gè)新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚(yáng)這種創(chuàng)新精神,變被動(dòng)學(xué)知識(shí)為主動(dòng)發(fā)現(xiàn)問題,培養(yǎng)自己的創(chuàng)新意識(shí).
2.擴(kuò)展:當(dāng)銳角為30°時(shí),它的對(duì)邊與斜邊比值我們知道.今天我們又發(fā)現(xiàn),銳角任意時(shí),它的對(duì)邊與斜邊的比值也是固定的.如果知道這個(gè)比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個(gè)比值很重要,下節(jié)課我們就著重研究這個(gè)“比值”,有興趣的同學(xué)可以提前預(yù)習(xí)一下.通過這種擴(kuò)展,不僅對(duì)正、余弦概念有了初步印象,同時(shí)又激發(fā)了學(xué)生的興趣.
四、布置作業(yè)
本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學(xué)生預(yù)習(xí)正余弦概念.
五、板書設(shè)計(jì)
初中數(shù)學(xué)教案設(shè)計(jì)范例【5】
教學(xué)目標(biāo):
1、了解公式的意義,使學(xué)生能用公式解決簡(jiǎn)單的實(shí)際問題;
2、初步培養(yǎng)學(xué)生觀察、分析及概括的能力;
3、通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實(shí)踐又反作用于實(shí)踐。
教學(xué)建議:
一、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):通過具體例子了解公式、應(yīng)用公式。
難點(diǎn):從實(shí)際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。
二、重點(diǎn)、難點(diǎn)分析
人們從一些實(shí)際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時(shí),首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計(jì)算時(shí),就是求代數(shù)式的值了。有的公式,可以借助運(yùn)算推導(dǎo)出來;有的公式,則可以通過實(shí)驗(yàn),從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會(huì)給我們認(rèn)識(shí)和改造世界帶來很多方便。
三、知識(shí)結(jié)構(gòu)
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實(shí)際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的.辨證思想。
四、教法建議
1、對(duì)于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識(shí)公式中每一個(gè)字母、數(shù)字的意義,以及這些數(shù)量之間的對(duì)應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對(duì)公式的靈活應(yīng)用。
2、在教學(xué)過程中,應(yīng)使學(xué)生認(rèn)識(shí)有時(shí)問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運(yùn)算推導(dǎo)新公式。
3、在解決實(shí)際問題時(shí),學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對(duì)應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問題。這種從特殊到一般、再?gòu)囊话愕教厥庹J(rèn)識(shí)過程,有助于提高學(xué)生分析問題、解決問題的能力。
教學(xué)設(shè)計(jì)示例:
一、教學(xué)目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1、使學(xué)生能利用公式解決簡(jiǎn)單的實(shí)際問題。
2、使學(xué)生理解公式與代數(shù)式的關(guān)系。
(二)能力訓(xùn)練點(diǎn)
1、利用數(shù)學(xué)公式解決實(shí)際問題的能力。
2、利用已知的公式推導(dǎo)新公式的能力。
(三)德育滲透點(diǎn)
數(shù)學(xué)來源于生產(chǎn)實(shí)踐,又反過來服務(wù)于生產(chǎn)實(shí)踐。
(四)美育滲透點(diǎn)
數(shù)學(xué)公式是用簡(jiǎn)潔的數(shù)學(xué)形式來闡明自然規(guī)定,解決實(shí)際問題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡(jiǎn)潔美。
二、學(xué)法引導(dǎo)
1、數(shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問小學(xué)里學(xué)過的公式為基礎(chǔ)、突破難點(diǎn)。
2、學(xué)生學(xué)法:觀察→分析→推導(dǎo)→計(jì)算。
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1、重點(diǎn):利用舊公式推導(dǎo)出新的圖形的計(jì)算公式。
2、難點(diǎn):同重點(diǎn)。
3、疑點(diǎn):把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差。
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀,自制膠片。
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教者投影顯示推導(dǎo)梯形面積計(jì)算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式。
七、教學(xué)步驟
(一)創(chuàng)設(shè)情景,復(fù)習(xí)引入
師:同學(xué)們已經(jīng)知道,代數(shù)的一個(gè)重要特點(diǎn)就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們?cè)谛W(xué)里學(xué)過許多公式,請(qǐng)大家回憶一下,我們已經(jīng)學(xué)過哪些公式,教法說明,讓學(xué)生一開始就參與課堂教學(xué),使學(xué)生在后面利用公式計(jì)算感到不生疏。
在學(xué)生說出幾個(gè)公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運(yùn)用公式解決實(shí)際問題。
板書:公式
師:小學(xué)里學(xué)過哪些面積公式?
板書:S=ah
(出示投影1)。解釋三角形,梯形面積公式
【教法說明】讓學(xué)生感知用割補(bǔ)法求圖形的面積。
初中數(shù)學(xué)教案設(shè)計(jì)范例五篇相關(guān)文章:
★ 初中勾股定理教案
★ 初中七年級(jí)數(shù)學(xué)教案人教版
★ 人教版初中數(shù)學(xué)教師教案模板
★ 初中數(shù)學(xué)教學(xué)方法有哪些
★ 初中趣味數(shù)學(xué)教案設(shè)計(jì)
★ 初二數(shù)學(xué)社團(tuán)活動(dòng)方案五篇
★ 中學(xué)數(shù)學(xué)教師教學(xué)隨筆6篇
★ 七年級(jí)下期中復(fù)習(xí)數(shù)學(xué)教案模板
★ 初中關(guān)于數(shù)學(xué)比例教案范文合集大全
★ 初三數(shù)學(xué)教學(xué)反思5篇